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ABSTRACT

Trajectories that capture object movement have numerous applica-
tions, in which similarity computation between trajectories often
plays a key role. Traditionally, trajectory similarity is quantified
by means of non-learned measures, e.g., Hausdorff, that operate
directly on the trajectories. Recent studies exploit deep learning to
map trajectories to d-dimensional vectors, called embeddings. Then,
some distance measure, e.g., Manhattan, is applied to the embed-
dings to quantify trajectory similarity. The resulting similarities are
inaccurate: they only approximate the similarities obtained using
the non-learned measures. As embedding distance computation is
efficient, focus has been on obtaining embeddings of high accuracy.

Adopting an efficiency perspective, we analyze the time complex-
ities of both the non-learned and the learning-based approaches,
finding that the time complexities of the former approaches are
not necessarily higher. Through extensive experiments on open
datasets, we find that only a few learning-based approaches can
deliver the promised higher efficiency, when the embeddings can
be pre-computed, while non-learned approaches are more efficient
for one-off computations. Among the learning-based approaches,
the self-attention-based ones are the fastest and the most accurate.
These results have implications for the use of trajectory similarity
approaches given different application requirements.
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1 INTRODUCTION

A trajectory is a sequence of timestamped point locations that cap-
tures the movement of an object such as a vehicle or a person. The
ability to quantify the similarity between two trajectories is essen-
tial in spatio-temporal data mining [28, 57, 66, 67, 73]. Due to the
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rich location and movement information encoded in trajectories and
many application settings, no single universal trajectory similarity
measure exists. Rather, different trajectory similarity measures have
been proposed for different settings. These can be largely classified
into two categories: non-learned measures and learned measures.
Early studies focus on non-learned measures [7, 8, 18, 19, 38, 54,
64]. They typically work by matching the points between two trajec-
tories (see Figure 1) and are hand-crafted to capture similarity. For
example, Hausdorff [7] computes a point matching that minimizes
the sum of point-to-trajectory distances of two trajectories. Popular
non-learned measures like the above have quadratic time complex-
ity in the number of points on trajectories to examine. This complex-
ity is considered a drawback in the literature [13, 21, 24, 76, 78, 84].
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Figure 1: Computation of non-learned measures (dotted lines

indicate point-to-point distance computation)

Learned measures [20, 29, 33, 75, 76, 78, 79] mainly aim to im-
prove the computational efficiency by exploiting deep learning and
have recently attracted substantial interest. They generally follow
the steps: (1) encode trajectories as vectors (called trajectory em-
beddings), and (2) compute the vector distance (e.g., the Manhattan
distance) between trajectory embeddings to serve as the trajectory
distance (see Figure 2). For example, t2vec [43], NEUTRAY [78], and
TMN [75] use recurrent neural networks (RNNs) [22, 35], while
T3S [76] and TrajCL [13] use self-attention models [62].

Among learned measures, some (e.g., NEUTRA]J and T3S) “learn”
to approximate existing non-learned measures (e.g., Hausdorff), i.e.,
the training signals are the ground-truth trajectory similarities
provided by non-learned measures. Such sacrifice in accuracy is
expected to be rewarded by higher computational efficiency.

Another series of the learned measures (e.g., t2vec and TrajCL)
improves not only the efficiency but also the measurement effec-
tiveness. Such methods typically use self-supervised learning tech-
niques to learn robust measures from unlabeled trajectories directly
without relying on any non-learned measure. Once trained, they
generally have better effectiveness, especially on measuring low-
quality trajectories, than the non-learned ones.

A general perception of the learned measures in either category
is that the learning-based approach yields superior efficiency, due
to the simple vector format of embeddings and the highly optimized
implementations of deep learning processes.
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Figure 2: Computation of learned measures

However, we observe that the time complexities of the learned
measures are not necessarily lower than those of the non-learned
ones. For example, T3S [76] and TrajCL [13] also have quadratic
time complexity in the number of trajectory points (covered in
Section 3.2). Although previous studies [13, 21, 24, 75, 76, 78] report
that the learned measures take less time to compute, they do not
share detailed experimental settings, e.g., as to whether GPUs or
CPUs are used for measuring trajectory similarity.

These observations prompt two questions: (1) Do learned mea-
sures have better computation time and space efficiencies than non-
learned measures? (2) How do the learned measures compare with
each other in terms of accuracy given training time constraints, e.g.,
due to different application requirements?

This study provides the first answers to these questions based
on comprehensive experiments on the efficiency of the trajectory
similarity measures, as well as the accuracy of the learned measures
given training time constraints. This way, we aim to provide a foun-
dation for the community to pursue promising research directions
and to provide guidance on similarity measure selection.

We start by analyzing the time complexities of representative
non-learned and learned measures and discuss their strengths and
limitations (Section 3). We find that most of the existing learned
measures do not necessarily have lower time complexity.

Then, we design three meta-algorithms for parallelizing the com-
putation of non-learned measures (detailed in a technical report 5]
due to the space constraint). We implement seven non-learned
measures that leverage these algorithms to use CUDA streaming
cores, thus enabling GPU-based empirical comparisons with learned
measures. The meta-algorithms provide a comprehensive basis for
future studies to implement new non-learned measures.

We compare the efficiency of both types of measures using GPUs
and CPUs on real datasets in a variety of settings (Section 4). We
use the measures for trajectory similarity computation, trajectory
clustering [17, 40], and trajectory kNN queries [34, 73, 85]. Previous
studies [43, 78, 79] use spatial indices like R-trees [10] for trajectory
kNN queries, which do not fit the learned measures. We use a kNN
query framework designed for high-dimensional vectors to better
realize the potential of the learned measures. We also investigate the
impact of training time constraints on the accuracy of kNN queries
for the learned measures, to guide similarity measure selection.

To sum up, we make the following contributions:

(1) We review existing non-learned and learned spatio-temporal
measures and analyze their time complexities, finding that the
learned measures do not necessarily have the lowest efficiency.

(2) We report on an extensive evaluation of the efficiency of
both types of measures on GPUs and CPUs, finding that: (i) The
non-learned measures are most efficient for one-off computation
(online matching of incoming trajectories or kNN queries with
data updates, e.g., for ride-sharing). (ii) The learned measures are
most efficient for offline trajectory clustering and kNN queries, or
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when the trajectory embeddings can be pre-computed and reused,
although they only offer approximate results. (iii) Further, among
the learned measures, the self-attention-based ones are the fastest
to train and offer the highest accuracy for kNN queries.

(3) We cover a simulated experiment to show a learned measure
that outperforms non-learned measures at one-off computation, and
we provide future directions for achieving such a learned measure.

Several survey papers [58, 59, 65] cover non-learned measures,
one of which [65] also mentions a few early studies of learned mea-
sures. None of these papers include a comprehensive comparison
between the two types of measures, which is our focus.

2 PRELIMINARIES

Trajectory. A spatio-temporal trajectory 7 = [p1,p2,. .., Pn] is
a sequence of n points, where point p; is either given by a pair of
coordinates (x;, y;) or a pair of timestamped coordinates (x;, y;, t;).
Trajectories without timestamps are also called paths.

Non-learned trajectory similarity measure. Given a trajec-
tory dataset D, the similarity between two trajectories is defined
by a function f: D X D — Ry,.

A non-learned measure fj,: D X D — Ry, e.g., Hausdorff, is a
handcrafted function to capture the similarity between two trajec-
tories. Distance measures can easily be converted into similarity
measures, and thus we also consider them as similarity measures.

Learned trajectory similarity measure. A learned measure fj,
e.g., T3S, involves a two-step process. First, an encoding function f,:
D — R4, which is learned, is applied to map each trajectory into a
d-dimensional embedding space. Second, the distance between the
embeddings h and h’ of trajectories 7 and 7 is used to quantify
the similarity between 7 and 77, e.g., fi(7,7') = 1 = ||fe(T) —
fe(T)|l1 =1—|/h—1||1, using the Manhattan distance.

Trajectory similarity query. Given a trajectory dataset D, a
query trajectory 7g, a trajectory similarity measure f, and a positive
integer k, a trajectory similarity query returns a set S C D with
|S| = k suchthatVT € S, 7" € D\S (f(743.7) = f(74.7)). This
query is also called a trajectory kNN query.

Trajectory clustering. Given a trajectory dataset D and a tra-
jectory similarity measure f, trajectory clustering groups the trajec-
tories in D into subsets (i.e., clusters) based on their similarity.

Both non-learned and learned measures can be applied in trajec-
tory similarity queries and clustering. A learned measure typically
approximates some non-learned measures. The approximation error
is referred to as the inaccuracy of the learned measure.

3 TRAJECTORY SIMILARITY MEASURES

Next, we cover existing studies on spatial / spatio-temporal trajec-
tory similarity measures, including both non-learned and learned
ones, and trajectory queries, including trajectory similarity queries,
and trajectory clustering. Figure 3 summarizes the representative
measures based on Euclidean space that we focus on. As the figure
shows, the learned measures dominate the recent literature.

3.1 Non-learned Trajectory Similarity Measures

Non-learned measures are generally based on point matching [7,
8, 14, 18, 19, 54]. The similarity between two trajectories is de-
rived from the distances between the matched point pairs. Based



Table 1: Categorization of representative trajectory similarity measures in Euclidean space

Category Methodology Measure Time Complexity | Space Complexity
Linear scan SPD [6], CDDS [14], SAX [9] O(n) o(1)
EDR [19], ERP [18], EDWP [54], LCSS [64], DTW [38],
Non-learned measures | Dynamic programming ] (19] (18] WP [54] [64] (8] 0(n?) O(n)
Discrete Fréchet [27], STEDR [60], STLCSS [60]
Enumeration OWD [44], HausdorfT [7] 0(n?) 0(1)
t2vec [43], NEUTRA]J [78], Play2vec [70],
Recurrent neural network At2vec [46], Traj2SimVec [84], Tedjopurnomo [60], Q(nd?) Q(d%)
Chen [20], CL-Tsim [24], TMN [75], RSTS [21]
Learned measures
Self-attention neural network | T3S [76], CSTRM [47], TrajCL [13] Q(nd) Q(d? + nd + n?)
Convolutional neural network | TrjSR [12] Q(mk?nyc) Q(k%nj.c + me)
Graph neural network TrajGAT [79] Q(nned) Q(d? + nd + nne)
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Figure 3: Representative trajectory similarity measures

on how the point matches are computed, we categorize the non-
learned measures into three classes: (i) linear scan-based, (ii) dy-
namic programming-based and (iii) enumeration-based measures.
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Figure 4: Computation of linear scan-based measures

Linear scan-based measures. Linear scan-based measures [6,
9, 14] take only a single scan over two trajectories (cf. Figure 4,
where each gray dotted line denotes a pair of matched points).
Such measures take O(n) time to compute, assuming n points per
trajectory, and ©(1) space, to store the partial similarity results,
excluding the O(n) space to hold the trajectories (same below).

For example, Sum-of-Pair Distance (SPD) [6] simply matches the
points on two trajectories following the order of the points and sums
up the pairwise point distances. It assumes trajectories of the same
number of points. Close-Distance Duration Similarity (CDDS) [14]
further considers the time dimension. It scans the points on two
trajectories and sums up the time span when the points on both tra-
jectories are within a given spatial distance threshold. The resulting
sum is used as the similarity. Symbolic Aggregate Approximation
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(SAX) representation, which was designed for time series [45], can
be extended to compute spatio-temporal trajectory similarity [9], as
trajectories are multivariate time series. SAX divides a time series
(a trajectory in our case, same below) into segments and uses a
symbol to represent the average of the points within each segment.
Two time series are aligned by the time dimension. The differences
between each pair of aligned symbol values are summed up as the
distance between two time series. SAX essentially discretizes time
series and computes their shape similarity.

Dynamic programming-based measures. The linear scan-
based measures may compute sub-optimal point matches and hence
result in falsely large trajectory similarity values. For example, SPD
simply matches the points on two trajectories following the order
that the points appear in the respective trajectories. It does not
match points based on their spatial distances. To address the is-
sue, dynamic programming (DP)-based measures are proposed to
explore a larger point-matching space while confining the compu-
tation costs. As Figure 1 shows, such measures examine all point
pairs incrementally with DP in O(n?) time, taking ©(n) space to
store the intermediate similarity (distance) values.

For example, Dynamic Time Warping (DTW) [38], which was
designed for time series analysis, e.g., speech recognition, has been
extended to trajectories by using the Euclidean distance function,
exploiting the property that it allows many-to-one point matching
to cope with trajectories with different travel speeds or sampling
rates. DTW computes a set of point alignhments between two tra-
jectories that achieves a global minimum sum of point-to-point
distances. It does not require trajectories of the same length. Dis-
crete Fréchet [27] also allows many-to-one point matching. It returns
the maximum distance between any matched point pairs.

Longest Common Sub-Sequence (LCSS) [64] adapts a string simi-
larity measure to reveal the longest common sub-sequence of two
trajectories. Here, a common sub-sequence refers to consecutive
pairs of points that are within a given spatial distance threshold.
Another series of studies [18, 19, 54] adapt the edit distance which
is also a string similarity measure. They compute the cost to “edit”
(insert, delete, or substitute) points on a trajectory to match (i.e., be
within a predefined distance threshold) those in the other trajectory.
A large distance suggests that more edits are needed to create a
match and hence less similar trajectories. For example, Edit Distance
on Real sequence (EDR) [19] considers a same unit cost for each edit.
Next, Edit Distance with Real Penalty (ERP) [18] factors the point



distances into the edit costs. Further, Edit Distance with Projections
(EDwP) [54] uses an interpolation-style insertion operation. It adds
points on the line between two adjacent points of a trajectory when
point insertions are needed to form matches. A few other measures
consider both spatial and temporal distances, such as STEDR and
STLCSS [60], which extend EDR and LCSS by adding a temporal
distance threshold when matching the points, respectively.

Enumeration-based measures. These measures compute all
pairwise point distances directly and aggregate them to form a
trajectory similarity (cf. Figure 1). They take O(n?) time and O(1)
space, as they do not need to store intermediate results.

For example, the One Way Distance (OWD) [44] uses the average
point-to-trajectory distance as the distance between two trajecto-
ries. The point-to-trajectory distance here is the minimum distance
between a point to any point on a trajectory. Hausdorff [7], which
was designed for image matching, computes the maximum point-
to-trajectory distance. A small Hausdorff distance means each point
in a trajectory to have a close match in another trajectory. Thus,
the two trajectories form a close match.

Discussion. Some non-learned measures have approximate al-
gorithms (e.g., Approx-DTW [81] and aprxFréchet] [26]) with lower
running times. The comparison between non-learned and learned
approximations is not our focus and is left for future work.

3.2 Learned Trajectory Similarity Measures

Studies in the past five years focused on deep learning models
to encode trajectories and subsequently learn trajectory similar-
ity [12, 13, 43, 75, 76, 78, 79, 84]. These studies can be categorized
into two classes according to their design purposes: (i) to learn
and approximate existing non-learned measures [76, 78, 79] with
supervised learning, where some non-learned measure is used to
provide the supervision signals, and (ii) to learn latent similarity
measures independent from any non-learned measures [12, 13, 43].
For the latter class, self-supervised learning is used to learn tra-
jectory embeddings. The similarity between two trajectories are
calculated based on their embeddings, e.g., using the L; distance.

A core component in these studies is the backbone trajectory
encoder, which takes a trajectory as input and outputs an embedding.
The encoders play a central role in the learned measures. Thus, we
review the learned measures based on the encoders used.

Recurrent neural network (RNN)-based measures. Since
trajectories are sequences, RNNs form a natural backbone trajec-
tory encoder. RNNs encode each trajectory point recurrently by
considering both the historical states (i.e., aggregated information
from preceding points) and the current state (i.e., the current point
to be encoded). When an RNN terminates, the final output state en-
tails aggregated information from all points on a trajectory, which
is used as the trajectory embedding, i.e., h in Figure 5.

RNN-based measures (using Long Short-Term Memory, LSTM [35]
or Gated Recurrent Unit, GRU [22]) take at least Q(nd?) time to
encode a trajectory because they need to compute the hidden rep-
resentation of n states (for the n points on a trajectory), while each
hidden representation takes ©(d?) time to compute (i.e., hidden
feature mapping). Here, d is the embedding dimensionality. Some
approaches may exceed ©(nd?) time, e.g., ©(nd? + n’d) time for
TMN [75]. RNN-based measures take Q(d?) space for the model
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Figure 5: RNN-based learned measures

parameters (i.e., d X d weight matrices) and another Q(d) space to
store the intermediate results during the encoding process.

Most RNN-based studies use a grid cell-based input represen-
tation. They partition the data space with a grid and transform a
trajectory into a sequence of grid cells enclosing the trajectory. This
transformation has two benefits: (1) The cell-based representation
reduces the input space from points in a continuous space to a small
number of discrete cells. This creates an input data distribution that
is easier to be learned. (2) As a side effect, the cell-based represen-
tation alleviates the impact of GPS errors and varying trajectory
sampling rates, leading to more robust embeddings.

The first RNN-based model, t2vec [43], adapts GRU by intro-
ducing a spatial proximity aware loss function, which penalizes
the model when it generates large similarity prediction errors on
spatially close trajectories. NEUTRAT [78] uses GRU (according to
its released code) and adds a spatial attention memory unit, such
that the embedding learning for a trajectory can refer to spatially
close trajectories seen by the GRU before. Further, NEUTRA]J has a
weighted ranking loss function to encourage model learning from
the most similar trajectory pairs. Traj2SimVec [84] improves upon
NEUTRA]J in two aspects: (1) Traj2SimVec leverages a k-d tree [11]
to select a set of most similar trajectories as the positive training
samples, rather than randomly sampling as in NEUTRAJ. Hence,
it achieves better training efficiency. (2) Traj2SimVec uses a sub-
trajectory-based loss to learn the detailed alignment and distances
between points, while the loss function of NEUTRA]J is based on
the embeddings of full trajectories. Chen et al. [20] also build upon
NEUTRAJ. They use an interpolation-based trajectory calibration
process to generate smoother trajectories for model training. CL-
Tsim [24] adopts contrastive learning to help generate more diverse
training samples so as to obtain more robust embeddings.

Unlike the models above that learn to encode each trajectory
separately, TMN [75] introduces a dual-branch model to learn tra-
jectory embeddings and point matches at the same time. Its match-
ing module aims to simulate the computation process of the non-
learned measures. TMN requires to input two trajectories together.
It cannot be used to encode individual trajectories. Thus, this model
cannot be used for the kNN query experiments in Section 4.3.

Besides, Tedjopurnomo et al. [60] and Li et al. (i.e., RSTS) [21]
adapt t2vec to measure spatio-temporal trajectory similarity. RSTS
simply introduces a three-dimensional grid cell where the third
dimension models the time. Tedjopurnomo et al. introduce three
loss functions to jointly learn trajectory similarity at trajectory,
point, and pattern levels. Several studies adopt RNN models to learn
similarity for special types of trajectories, e.g., point of interest (POI,
At2vec) [46] and sports play (Play2vec) [69, 70] trajectories.

Self-attention-based measures. Multi-head Self-attention (“self-
attention” in short) [62] is a more recent sequential model that



addresses the catastrophic forgetting issue of the RNNs. It learns
the hidden correlation between every two elements in an input
sequence (cf. Figure 6). It takes Q(n?d) time to encode a trajectory.
While this seems to be higher than the time taken by RNNs, self-
attention models may run much faster than RNNs on GPU. This is
because self-attention models run in only one round to compute a
sequence embedding, which is highly parallelizable. In contrasts,
RNNs need to run n rounds iteratively due to their recurrent struc-
tures. Self-attention-based measures take Q(d? + nd + n?) space,
where the model parameters (i.e., weight matrices) take Q(d?)
space, and the intermediate results for computing the attention
coefficients (between the n® pairs of points) take Q(nd + n®) space.
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Figure 6: Self-attention-based learned measures

A few studies have used self-attention. CSTRM [47] leverages
Masked Language Modeling [25] to learn trajectory embeddings
in a self-supervised manner. The trained trajectory encoder can be
further fine-tuned to approximate non-learned measures. T3S [76]
combines self-attention and LSTM to capture the topological and
spatial features of trajectories. Later, TrajCL [13] introduces a fully
self-attention-based encoder that adaptively learns the topological
and spatial features. It lifts the dependence on RNN models.

Convolutional neural network (CNN)-based measures. CNN
models are widely used in image representation learning. They stack
convolution kernel and pooling layers to capture image features.
To convert a trajectory to a fixed-size image, a blank image cor-
responding to the data space enclosing the trajectory is created.
Then, the points on the trajectory are mapped to pixels of the image,
where a pixel value indicates the number of points mapped to the
pixel (cf. Figure 7). Such a conversion resembles the grid-cell based
representation described earlier and shares similar benefits.

x L layers

Convolution

Figure 7: CNN-based learned measures

TrjSR [12] is the only CNN-based model. It is trained by recon-
structing a super-resolution trajectory image from a low-resolution
one. It encodes a trajectory in Q(mk?nyc), where k is the side
length of the convolution kernels, ny is the number of kernels, ¢
is the channel size, and m > d is the number of pixels. It takes
Q(k?ngc + mc) space, where the model parameters take Q(k%ny.c)
space, and the intermediate results take Q(mc) space.
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An issue with the CNN-based measures is that they lose the
sequence information of the trajectory points. They cannot distin-
guish two trajectories traveling towards opposite directions.

Graph neural network (GNN)-based measures. GNNs are
designed for graph embedding. In a GNN layer, every node receives
and aggregates node embeddings from its neighbors (aggregation).
Then, the aggregated information is combined with the embedding
of the node to form its updated embedding (combination).

TrajGAT [79] is the only GNN-based measure (cf. Figure 8). It
builds a multi-level quadtree [55] that partitions the space into cells
with different sizes to help create graphs with multi-granularity
views of trajectories. To construct a graph from a trajectory, it
queries each trajectory point in the quadtree and adds the tree nodes
on the traversed path into the graph as graph nodes. The edges
between the added tree nodes are kept as graph edges. To encode
a trajectory graph, TrajGAT takes Q(nn.d) time, where n, is the
number of neighbors per node in the graph. TrajGAT takes Q(d? +
nd +nn) space, where the model parameters take Q(d?) space, and
the intermediate results for computing the node embeddings and
the attention coefficients between nodes take Q(nd + nn,) space.

Discussion. We have focused on trajectories in Euclidean space.
A closely related topic, trajectory similarity measures for road net-
work space, has also attracted a strong interest [15, 29, 30, 33, 39,
56, 77, 82, 87]. Both non-learned and learned measures have been
proposed. The learned measures generally adopt GNNs to exploit
the network connectivity patterns and learn embeddings for (in-
tersections or road segments of) the road networks. A trajectory
is represented by aggregating the embeddings of the intersections
and/or road segments passed by it. Due to the rich works on this
topic, we leave an empirical analysis for future work.

3.3 Trajectory Similarity Queries

Trajectory similarity queries typically refer to trajectory k nearest
neighbor (kNN) queries (Section 2). All existing trajectory kNN
query algorithms are designed for the non-learned measures. Basi-
cally, they query trajectories from tree-based indies (e.g., R-trees [32])
with spatial distance-based pruning to speed up the search.

Most of the non-learned measures have their dedicated indices
and query algorithms. LCSS comes with a 1-NN query algorithm [64].
It computes a distance lower bound between the query trajectory
and the data trajectories in an index node. If this lower bound is
greater than the distance between the query trajectory and the
currently found nearest trajectory, the node (and all associated
trajectories) can be safely pruned. EDR introduces several string
encoding-based pruning techniques [19], including Q-gram (i.e.,
sub-string abstracts), string embedding, and triangle inequality
based pruning [36]. ERP computes a distance lower bound based
on the summation of trajectory points to prune dissimilar trajecto-
ries [18], while EDWP computes the distance between trajectories
and bounding boxes of trajectories for pruning [54].
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There is also a generic R-tree-based structure for trajectory kNN
queries [63] that supports LCSS, DTW, and SPD. Its query algo-
rithm creates a minimum bounding envelope (MBE) for the query
trajectory 74, which bounds the search space by adding spatial and
temporal offsets to 7. Trajectories outside the MBE are pruned.
DFT [73] is a generic, distributed segment-based R-tree-like index
that supports Hausdorff and Fréchet. The kNN algorithm of DFT
leverages a small set of sampled data trajectories (more than k)
to obtain a distance threshold e that bounds the largest distance
between Tq and its k-th NN. Then, DFT leverages € to filter out
dissimilar data segments of 75. DITA [57] is a third R-tree-based
index, and it supports DTW and ERP. It indexes points sampled at
equal intervals on each data trajectory, for space efficiency. Its kNN
algorithm also starts by computing a k-th NN distance threshold
€. Unlike DFT, DITA can shrink e during its search process, by
subtracting the distance between the currently matched points of
a data trajectory and the query trajectory. This is because DTW
and ERP compute trajectory distance by summing up the distances
between the matched points. In contrast, Fréchet and Hausdorff
compute the global maximum distance of the matched points, such
that e cannot be updated progressively. We use DFT and DITA for
indexing in the experiments due to their generalizability.

3.4 Trajectory Clustering

Earlier studies on trajectory clustering [17, 23, 40, 42] apply classic
clustering algorithms, e.g., k-medoids, with non-learned measures
(e.g., LCSS), For example, Lee et al. [40] presents a partition-and-
group framework for trajectory clustering. Li et al. [42] focus on
finding top-k clusters considering the cluster cardinality. Besides, a
series of studies [17, 23, 42] consider online trajectory clustering.

Recent studies [16, 28, 31, 51, 80, 83] exploit deep learning to
improve clustering efficiency and effectiveness. Yao et al. [80] lever-
age an RNN auto-encoder. They first learn trajectory embeddings
and then cluster the embeddings by the k-medoids algorithm. This
clustering paradigm is followed by the later studies. DETECT [83]
and Trip2Vec [16] further consider POIs on trajectories to study
the mobility pattern of trajectories. E2DTC [28] adopts t2vec [43]
as the encoder and fine-tunes it with a multi-task loss function
that considers both trajectory similarity and cluster distribution.
Besides, several studies [51, 68] extend deep trajectory clustering
to different data domains, e.g., aircraft or vessel trajectories.

4 EXPERIMENTS

We study the performance of both the non-learned and the learned
measures empirically, for three representative tasks: trajectory sim-
ilarity computation, clustering, and similarity querying.

4.1 Experimental Setup

Datasets. We use five real-world trajectory datasets, which are
used in recent studies [12, 13, 24, 75, 76, 78, 79]. We pre-process the
datasets by discarding short trajectories with less than 20 points, as
done in previous studies [12, 13, 21, 43, 75, 78]. Table 2 summarizes
dataset statistics after pre-processing.

Porto [2] contains taxi trajectories collected from Porto, Portugal,
between July 2013 and June 2014. The trajectory points do not come
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Table 2: Dataset statistics

Porto Germany Geolife Chengdu Xi’an
#traj. 1,380,777 243,417 15,972 1,259,639 1,009,693
#points per traj. 20 ~ 3,836 20 ~ 200 20 ~ 56,780 | 20 ~ 1,891 | 20 ~ 8,730
Avg. #points per traj. 50 84 1,201 142 262
Traj. length (m) 8~ 110,227 {10,805 ~ 1.4e8 | 1 ~ 556,814 |36 ~ 51,789 | 23 ~ 219,824
Avg. traj. length (m) 6,445 338,622 25,175 4,586 6,204
Spatial area (km2) 16.0 X 20.1 | 1,023 X 1,187 | 235.9 X 232.5| 9.7 X 9.7 9.9 % 9.6
Time span - - five years a week a week

with timestamps. The average number of points per trajectory is
50, which is the smallest among the five datasets.

Germany [1] contains user trajectories collected mainly within
Germany from OpenStreetMap without timestamps. This dataset
has the longest average trajectory length, i.e., 338 km, and covers
the largest spatial area, i.e., over 10% km?.

Geolife [86] contains user trajectories collected in Beijing, China,
from April 2007 to August 2012. We have further discarded the
trajectories recorded outside Beijing, which take up a very small
portion (6%) of the data. Geolife records trajectories of different
types of user movements, e.g., walking, cycling, and driving. We
use all trajectories together due to the limited dataset size.

Chengdu [3] contains ride-hailing trajectories from the Second
Ring road of Chengdu, China, which is a densely populated area, in
the first week of November 2016. It covers the smallest area among
the five datasets and has the shortest average trajectory length.

Xi’an [3] contains ride-hailing trajectories from the Second Ring
Road of Xi’an, China, in the first week of October 2018. This is the
most current dataset and we use it by default. Its sampling rate is
the lowest, i.e., roughly 30 meters per sampled point.

Similarity measures. For each category of measures in Sec-
tion 3, we study the state-of-the-art as well as measures that have
unique computation strategies, such as NEUTRAJ and TMN, which
are both RNN-based but use single- and dual-branch models, re-
spectively. As there is no released code for SAX on trajectories,
we follow the proposal [9] and compute the duration for which
two trajectories stay less than a given distance threshold based on
their symbolic representations. We denote this measure as SAR. The
similarity measures tested are listed below, where “ST” refers to
measures that consider both spatial distances and time differences.

(1) Non-learned: (@) Linear scan: CDDS (ST) and SAR (ST) (2) DP:
DTW, ERP, Fréchet, and STEDR (ST) (3) Enumeration: Hausdorff.

(2) Learned: () RNN: NEUTRA] (single-branch), TMN (dual-branch),
RSTS (ST) (2) Self-attention: T3S (RNN + self-attention), TrajCL (self-
attention) 3) CNN: TrjSR () GNN: TrajGAT.

Implementation details.All experiments are run on a virtual
machine with an 8-core Intel Xeon 4214 CPU (2.2 GHz), 128GB RAM
and an NVIDIA V100 GPU (5,120 FP32 cores and 16GB VRAM). We
use these due to their ease of access for reproducibility reasons. We
repeat each experiment five times and report the average results.

For the non-learned measures, we use traj-dist [4], a commonly
used CPU-based sequential implementation of trajectory similar-
ity computation in Python. It supports DTW, ERP, Fréchet, and
Hausdorff, while we add support for STEDR, CDDS, and SAR.

We generalize the non-learned measures into three meta-GPU-
based algorithms, i.e., linear scan-based, DP-based, and enumeration-
based algorithms, to enable GPU-based implementation. We imple-
ment these algorithms on CUDA cores of GPUs in Python with the



Numba 0.53.1 library. We leave the details of the meta-GPU-based
algorithms in the technical report [5]. We note that parallel imple-
mentations of some of the non-learned measures exist (e.g., [72]).
We use our meta-GPU-based algorithms instead because these do
not contain special optimizations, enabling us to capture better the
speedups achievable by a simple GPU-based adaptation.

For the learned measures, we use their released source code
that are written in PyTorch, which can be run on either CPU or
GPU, except for T3S and RSTS for which no code is available. We
implement T3S and RSTS with PyTorch 1.8.1 following their papers.

Following previous studies [75, 76, 78], we set the embedding
dimensionality d to 128. The side length of the grid cells is 100
meters for the grid-based learned measures. The image size m of
TrjSR is 162 X 128 following its paper. The number of encoder layers
stacked in each learned measure is 2, except for TrjSR, which has
10 CNN layers following its paper. We set the number of GPU cores,
ne, for computing the similarity between a pair of trajectories to 64.
The batch size is 512 by default, to fit every measure in memory.

4.2 Trajectory Similarity Computation

4.2.1 Setup. For each dataset, we randomly sample 100,000 pairs
of trajectories and compute their similarity using each measure.
Each trajectory is limited to at most 200 points, following previous
studies [13, 21, 75, 78, 79], as the learned measures may fail on
longer trajectories due to out-of-memory errors (cf. Section 4.2.3).
Each trajectory is used only once, and no embeddings can be reused
in Section 4.2 by default. This experiment setting aims to evaluate
the efficiency of computing the similarity of a pair of trajectories
arriving online. We vary the data size of each run (i.e., single
or batched) and the computation unit (i.e., CPU or GPU). Here,
“single” refers to computing for a single pair of trajectories (with a
single core), while “batched” refers computing for multiple pairs
(i.e., 512) of trajectories using multiple cores of a computation unit.

Note that, when we compute trajectory similarity in batches,
different “batched” computation paradigms are applied on GPU and
CPU, respectively. On GPU, we use n, cores for parallel processing
of each trajectory pair following our meta-GPU-based algorithms.
On CPU, we simply use a computation core for each trajectory
pair, i.e., no parallel processing is done on individual trajectory
level. This is because there are much more cores on GPU than on
CPU [71]. In batch processing mode, all CPU cores can be fully
utilized by the trajectory pairs in a batch already, while the cores
on GPU can be shared at the individual trajectory level.

We run on both CPU and GPU for two reasons: (1) to show the
speedups achievable using GPUs for the same trajectory similarity
measure and guide the choice between CPU (less expensive but
slower) and GPU (faster but more expensive) for different applica-
tions; and (2) to compare the speedups achievable using GPUs for
different trajectory similarity measures, to reveal the measures that
can better exploit the power of GPU parallelization.

We report the elapsed time (in seconds) and the space cost
(in GB). All input data is aligned to the same form, i.e., raw 2-
dimensional trajectory points, and the outputs are similarity scores.
The cutoff running time is 7,200 seconds. We use “OT” to denote
overtime errors and “OOM” to denote out-of-memory errors.
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Table 3: Elapsed time of trajectory similarity computation
(best results are in bold)

Dataset Measure GplsjmglépU GPB[?tChgi)U
DTW 14623 36.04| 3.96 10.07

Nonlearned ERP 190.76  78.46| 409  12.88
Fréchet | 146.90 32.59| 4.00 7.4

Hausdorff | 135.71 26.64 4.07 6.57
Porto |~~~ " NEUTRAJ|4907.14 3088.88| 94.69 229.21
TMN 389.63 535.48| 54.67 254.23

Learned T3S 46575 861.54| 49.49 649.17
TrajCL 56194 666.82| 59.49 276.30

TrjSR 584.21 OT| 301.74 4409.75

TrajGAT |3319.11 2580.19| 494.34 603.32

DTW 13221 7512| 875 21.38

ERP 16334 191.38| 833  35.03

Nonlearned p.por | 13049 67.14| 837 1832
Hausdorff | 113.22  39.21| 836 14.42
Germany |~ 7 " NEUTRAJ| = OT 5893.80| 164.62  367.51
TMN 42918 776.21| 113.06 432.96

Learned T38 428.82 979.93| 7493 392.11
TrajCL 636.30 945.13| 93.91 436.90

TrjSR 91414  OT| 165.69 1909.11

TrajGAT |2440.17 2194.09| 588.12 1775.44

DTW 16568 130.19| 5.68  24.70

Nonlearned ERP 21214 28355| 594 4891
Fréchet | 16591 91.40| 582  23.02

Hausdorff | 140.97 47.29| 576 16.95
[~~~ 7 7 T NEUTRAJ[4182.19 2682.02| 118.14 306.60
TMN 524.18 608.16| 68.64 414.70

. T3S 618.42 1242.94| 9335 833.46
Geolife | Learned TrajCL 613.15 71160 88.28 425.05
TrjSR 58839  OT| 299.55 4417.78

TrajGAT | 4375.38 3799.01 | 1335.27 181551

Nomlearned STEDR | 16546 22135| 650 43.94

e CDDS 138.17 24.74| 665 17.35

SAR 158.97 3045| 6.85 17.53
[Learned (ST) RSTS = [2970.58 3745.92] 805.44 939.33
DTW 13991 11259| 987 2934

Nonlearned ERP 16870 29832| 955 5343
Fréchet | 138.66 102.87| 9.50 2556

Hausdorff | 116.74 50.56| 9.55 18.78
[~~~ 7 7 T NEUTRAJ[5235.88 3306.81| 108.83 222.66
TMN 25170 409.24| 78.08 220.05

T3S 477.05 1188.18| 89.10 428.20

Chengdu | Learned iy | 61749 74970| 8166 22945
TrjSR 94735  OT| 197.99 1950.42

TrajGAT |5713.50 5387.81|2700.47 5682.02

Nomlearmed STEDR | 13757 23334 1211 47.82

ST CDDS 114.57 30.18| 11.85  20.20

SAR 160.68 29.79| 1269 17.53
[Learned (ST) RSTS = [ 1964.53 4409.20 [ 1087.39 1212.71
DTW 16824 13342| 621  28.11

Nonlearned ERP 21528 362.92| 634  54.04
Fréchet | 169.60 117.20| 649  25.66

Hausdorff | 145.41 70.63| 5.83 17.75
|~~~ " NEUTRAJ|4226.71 2609.39] 102.85 215.03
TMN 394.89 46379 62.08 230.18

Xi‘an Learned T35 639.53 1958.81| 83.69 778.61
TrajCL 622.56 733.51| 7137 298.11

TrjSR 62554  OT| 318.97 4629.79

TrajGAT |4439.46 4114.52|1112.02 1560.24

Nonlearned SIEDR | 17103 28066 7.25 48.09

T CDDS 14251 33.77| 7.06  22.66

SAR 16254 3427| 722 19.40
|Learned (ST) RSTS = [3736.67 6030.93]1257.75 1473.71




4.2.2  Results under Online Computation Settings. Table 3 shows
the elapsed times when all computation is done online, including
the trajectory embeddings. Overall, the non-learned measures take
less time to compute than the learned ones when they are run online
on the same computation units. Even for batched computation on
GPU, where the learned ones are supposed to be at their best, the
non-learned measures are at least an order of magnitude faster.

A few detailed observations can be made from the table:

(1) Both non-learned and learned measures take the least
time for batched computation on GPU. This setting best exploits
the parallelization power of GPU. Such a setting thus should be used
for one-off similarity computation of a large number of trajectories
(e.g., for offline trajectory mining tasks such as contact tracing).

(2) When computing the similarity between trajectories on
per pair basis (“single”), e.g., for an ad hoc similarity computa-
tion, the non-learned measures prefer CPU while the learned
ones prefer GPU. The non-learned measures are lightweight, such
that the savings achieved by GPU for a single trajectory pair is not
worth the data transfer costs between CPU and GPU. The learned
measures, on the other hand, take less time on GPU, where matrix
multiplications in the trajectory encoders are better suited.

(3) Among the non-learned measures, the enumeration-
based one, Hausdorff, is the fastest in general (excluding the
spatio-temporal measures), due to its simple computation rules.
When computed on GPU, Hausdorff further benefits from its in-
dependent and fully parallelized calculation of the pairwise point
similarity scores. Among the DP-based measures, ERP generally
takes the most time, as it has the most complex computation rules.
We note that all non-learned measures are very fast and have similar
elapsed times under the GPU-batched mode, while DTW reported
marginally faster elapsed time on Porto and Geolife.

Among the spatio-temporal measures, the linear scan-based
CDDS is generally the fastest on GPU for its simple calculation.
SAR performs similar to CDDS which is also a linear-time measure.
On CPU, SAR can run faster than CDDS, because it can early ter-
minate the computation when two trajectories do not align in time.
This early termination does not help on GPU as the trajectories are
distributed to each streaming core for processing anyway.

(4) Among the learned measures, the attention-based ones
T3S and TrajCL are more efficient in time — T3S is the slower
among the two as it also uses an RNN. This is because the attention
computation can be fully paralellized (cf. Section 3). An RNN-based
measure, TMN, is the fastest among the learned measures, due to
its simple model (a vanilla LSTM). NEUTRA]J and RSTS are also
RNN-based, while they suffer in efficiency especially on the “single”
mode. NEUTRA]J has an expensive spatial module to compute the
attention coefficients between the current and the seen training
trajectories (cf. Section 3), while RSTS has an expensive input pre-
processing step (cf. Table 4). The CNN-based measure TrjSR and
the GNN-based measure TrajGAT are also slow. TrjSR suffers in the
large amount of computation for its CNN, while TrajGAT spends
much time on converting a trajectory into a graph.

Computation time decomposition. We further “zoom in” on
the time costs. The elapsed time of a similarity measure reported in
Table 3 (Total in Table 4) mainly consists of three parts: (1) input pre-
processing time (Pre.) to convert a raw trajectory into the format
required by a measure (e.g., a graph for TrajGAT), (2) embedding
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Table 4: Detailed time and space costs of batched trajectory
similarity computation on Xi’an

Measure Time on GPU Time on CPU Space

Pre. Emb. Cmp. Total | Pre. Emb. Cmp. Total | (GB)
DTW 5.64 - 0.56 6.21 0.65 - 2745 28.11| 0.02
ERP 5.72 - 0.62 6.34 0.52 - 53.51 54.04| 0.02
Fréchet 5.91 - 0.58 6.49 0.50 - 25.16 25.66| 0.02
Hausdorff 5.28 - 055 5.83 0.44 - 17.30 17.75| 0.02
NEUTRAJ | 68.15 34.69 1le-d 10285 67.83 14720 2e-3 215.03] 0.13
TMN 56.10 597 1le-4 62.08] 56.18 174.00 2e-3 230.18| 6.37
T3S 59.73 2395 1le-4 83.69| 58.27 720.34 2e-3 778.61| 3.02
TrajCL 60.38 10.99 1le-4 71.37| 57.79 24030 2e-3 298.11| 5.81
TrjSR 86.56 232.40 le-4 318.97| 90.08 4539.71 2e-3 4629.79| 9.12
TrajGAT 1035.67 76.35 1le-4 1112.02{1028.66 531.58 2e-3 1560.24| 13.89
STEDR (ST) 6.72 - 053 7.25 0.83 - 47.26 48.09| 0.02
CDDS (ST) 6.49 - 0.57 7.06 0.60 - 22.06 22.66| 0.02
SAR (ST) 6.60 - 0.62 7.22 0.68 - 18.72 19.40| 0.03
RSTS (ST) [1239.22 18.53 1le-4 1257.75|1245.93 227.78 2e-3 1473.71| 0.76

time (Emb.) to compute trajectory embeddings (inapplicable to the
non-learned measures), and (3) similarity computation time (Cmp.),
i.e., the time to compute point matches and distances for the non-
learned measures, or to compute the embedding distances for the
learned measures. There is also time for transferring the results
and other minor inter-step processing, which is very small and
hence omitted from the table. We only show the results on Xi’an in
Table 4, as similar patterns are observed on the other datasets.
Overall, although the non-learned measures take more time than
the learned measures on similarity computation, they have better
efficiency on input pre-processing and do not require trajectory
embeddings, which explains for their smaller total elapsed times.
The non-learned measures take more time for input pre-processing
on GPU than on CPU. This is because when preparing data on GPU,
we need to pad the trajectories in a batch to the same length and
group them into a matrix, which is required by CUDA.
Table 4 also suggests that the learned measures can be faster (in
Cmp.), when the embeddings can be pre-computed and reused.
Memory costs. Table 4 further shows that the non-learned mea-
sures take less memory, as they do not need large weight matrices.
We also study the maximum batch size for each measure. Overall,
the non-learned measures allow a larger batch size than the learned
ones except NEUTRAJ which also has a good space efficiency for
its simple RNN. Detailed results are included in [5].

4.2.3 Impact of the Number of Points in Trajectories n. We vary the
number of points on trajectories, n, from 20 to 1,600. Most existing
studies on learned measures only used trajectories with up to 200
points. Ours is the first set of results with over 1,000 points.

We focus on the batched setting on GPU and CPU as this is a
more realistic setting in practice, and we omit the “single”-mode
results as similar result patterns are observed as before. We again
present the results on the largest dataset, Xi’an, for brevity.

Figure 9 shows the results, where each configuration, e.g., “[20,
200]” means to compute trajectory similarity for 100,000 pairs of
randomly sampled trajectories each with n = 20 to 200. All mea-
sures except TrjSR have increasing elapsed times as n increases. The
non-learned measures (denoted by empty bars with hatches) show
clear advantage on GPU, while both types of measures perform
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Figure 9: Elapsed time vs. #points in trajectories

closer on CPU when n becomes larger. TrjSR uses fixed-size images
to represent trajectories, which is independent from n. TMN, T3S,
and TrajCL trigger out of memory errors when n becomes large,
especially on GPU. This is because TMN computes the attention co-
efficients between all pairs of points on two trajectories, while T3S
and TrajCL compute the coefficients between every two points on
each trajectory. These coefficient computations lead to a quadratic
memory space overhead with respect to n.

4.2.4 Impact of the Trajectory Embedding Dimensionality d. We
vary d from 32 to 256 following the literature and report the re-
sults in Figure 10. The non-learned measures are not impacted by d.
The elapsed times of the learned measures present only a slightly
increasing trend, as their matrix operations have been well par-
allelized by the PyTorch package. The learned measures are still
slower even when d = 32, which is the smallest d value used in
the literature [79]. When d increases to 256, TrajGAT has an out of
memory error, because it takes more space to compute the graph-
based trajectory embeddings. We show only the results on GPU for
conciseness as similar patterns are observed on CPU.
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Figure 10: Elapsed time vs. embedding dimensionality (GPU)

4.2.5 Impact of the Number of Trajectory Pairs. We further vary
the number of trajectory pairs from 1,000 to 1,000,000. Again, the
computation time grows with the number of trajectory pairs, and
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the non-learned measures outperform the learned ones. These re-
sults reinforce the advantage of the non-learned measures in time
efficiency. We omit the result figures due to space limit.

4.2.6 Impact of Computation Hardware. We also study the im-
pact of different computation hardware, e.g., NVIDIA A100 which
is a more advanced GPU. The results confirm that the similarity
measures benefit from such more advanced hardware, which are
included only in the technical report [5] due to the space limit.

4.2.7 Impact of the Number of GPU Cores n.. We vary the number
of GPU cores n, for computing the similarity between a pair of
trajectories from 1 to 128. Figure 11a reports the results on Xi’an for
the non-learned measures (the learned measures are implemented
based on PyTorch which does not offer control on the number of
GPU cores for such computation). Overall, when n, increases, the
elapsed times first decrease before stabilizing at around n, = 32.
This is because when n. grows, the number of trajectory points as-
signed to each GPU core decreases, which helps reduce the elapsed
time. When n. grows further, the benefit of reducing the number
of points per core shrinks, while the overhead on scheduling more
cores increases, such that the elapsed time does not decrease further.
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Figure 11: Elapsed time vs. hardware and hyper-parameters

4.2.8 Impact of the Hyper-parameters of Learned Measures. Hyper-
parameters of the learned measures, such as the image size m in Tr-
jSR and the quadtree node capacity gp¢ in TrajGAT, also impact the
time efficiency. Particularly, the quadtree node capacity determines
the quadtree structure in TrajGAT, which is inversely proportional
to the number of neighbors of a graph node in TrajGAT, n, — the
time complexity of TrajGAT is linear in ne (cf. Section 3.2).

We vary m and qp¢, and we report the detailed time costs for
batched similarity computation on GPU in Figures 11b and 11c,
respectively. When m increases, TrjSR takes more time to run,
since the input size grows. For TrajGAT, when gy, increases, the
pre-processing time increases, because its hash computation to
identify quadtree node candidates becomes more complex during
graph construction. The embedding time decreases, since each node
corresponds to a larger area, and each trajectory can be represented
with fewer nodes, and n, also decreases. Overall, the total time
increases with gnc, which is dominated by the pre-processing time.
4.2.9 Results with Embedding Reuse. Existing studies [13, 76, 78]
assume two sets of trajectories and report the time to compute the
similarity between each pair of trajectories, one from each dataset.
They compute the embedding of each trajectory once and reuse it for
all similarity computations, which saves the overall elapsed time



substantially. We repeat such a set of experiments to show that,
when the embeddings can be pre-computed, the learned measures
indeed can delivery their promised higher computation efficiency.

On each dataset, we randomly sample and form two sets of 1,000
and 100 trajectories, respectively, such that we have 100,000 trajec-
tory pairs to compute as before. We report the results of batched
computation on Xi’an in Table 5. Now the learned measures TrajCL,
T3S, and NEUTRAJ outperform the non-learned ones, benefiting
from the one-off input pre-processing and embedding times. Tr-
jSR and TrajGAT also benefit substantially. However, they are still
slower than the non-learned ones because even the one-off com-
putations are too expensive. These results are consistent with the
literature [13]. TMN does not apply in this experiment, as it is a
pairwise model and cannot pre-compute for individual trajectories.

Table 5: Detailed time and space costs of batched trajectory
similarity computation between two trajectory sets on Xi’an

Measure Time on GPU Time on CPU Space

Pre. Emb. Cmp. Total| Pre. Emb. Cmp. Total| (GB)
DTW 0.10 - 058 0.68| 0.01 - 2832 28.33| 0.02
ERP 0.10 - 070 0.80| 0.01 - 55.10 55.11| 0.02
Fréchet 0.10 - 057 0.67| 0.01 - 26.03 26.04| 0.02
Hausdorff | 0.10 - 0.63 0.73] 0.01 - 18.71 18.72| 0.02
NEUTRAJ | 049 046 1le-4 096| 051 078 2e-3 1.29] 0.13
TMN - - - - - - - - -
T3S 0.48 0.03 1le-4 051 049 5.09 2e-3 5.63| 3.02
TrajCL 047 0.02 1le-4 0.49| 046 175 2e-3 2.21| 5.81
TrjSR 0.62 090 1le-4 1.52| 0.63 36.89 2e-3 37.52| 9.12
TrajGAT 17.96 1.81 1le-4 19.77|18.23 17.30 2e-3 35.53| 13.89
STEDR (ST)| 0.14 - 059 0.73] 0.02 - 41.85 41.87| 0.02
CDDS (ST) | 0.14 - 050 0.64| 0.02 - 20.97 20.99| 0.02
SAR (ST) 0.21 - 079 1.00| 0.02 - 24.54 24.57| 0.03
RSTS(ST) | 498 0.08 1le-d 506| 503 1.18 2e-3 6.30] 076

4.3 Trajectory Similarity kNN Queries

4.3.1 Setup. The default trajectory dataset D contains 100,000
randomly sampled trajectories each with 20 to 200 points. The query
set Q contains 1,000 trajectories in the same length range randomly
sampled outside D. The query parameter k is 50 by default.

We deploy dedicated indices for the non-learned and the learned
measures, respectively, to provide a fairer comparison. This differs
from the existing studies [43, 78] that use R-trees [10] to index
the raw trajectories for query pruning and compute the similar-
ity by the embeddings. For the non-learned measures, we use two
recent indices, i.e., DITA [57] for DTW and ERP, and DFT [73]
for Hausdorff and Fréchet (cf. Section 3.3). For the learned mea-
sures, we use generic vector similarity search indices for trajectory
embedding-based kNN queries, as there are no existing indices de-
signed specifically for trajectory embeddings. We use Faiss [37]
which is a generic, widely used similarity search library for vector-
ized data. The Inverted file index (IVF) from this library is used by
default for its good balance between query efficiency and accuracy.

We report results on both query efficiency and effectiveness
(i.e., accuracy). The learned measures are inaccurate. Results on
both aspects together guide the choice of learned measures for
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different application scenarios. Following the literature [76, 78, 79],
we use hit ratios (HR@50) to measure the accuracy of the learned
measures. We also report the cost of index construction. We use all
learned measures expect TMN which cannot be applied in index-
based kNN queries because it does not produce embeddings in
advance. Like before, we focus on batched processing on Xi’an.

4.3.2  Overall Results. We report the elapsed times of index building
and query processing in Table 6. The index building time in the
table includes the time to build the indices and - for the learned
measures — the time to compute embeddings for the data trajectories.
Likewise, the query time for the learned measures includes the time
to compute an embedding for the query trajectory (as the query
trajectories may arrive online). Overall, the learned measures take
more time on index building, for faster query processing.

Table 6: kNN index building and query performance results

Index building |Query time|Query time
Measure Time|Space (GB)| (GPU) (CPU)
DTW 0.71 1.60 1193.12 5441.06
ERP 0.69 1.60 1304.40 6792.25
Fréchet 28.46 2.63 878.89 1783.95
Hausdorft| 28.46 2.63 903.41 3410.28
NEUTRAJ| 49.15 ~ ~ 255|098 1430
T3S 58.39 2.55 0.96 8.58
TrajCL 47.88 2.55 0.89 4.33
TrjSR 171.15 2.55 2.42 23.43
TrajGAT |661.69 2.55 6.62 60.45

Index building costs. The index build times of the learned
measures are higher because they need to first encode raw trajec-
tories into embeddings. In comparison, the non-learned measures
index raw trajectory points or segments, and their indices are faster
to build. The DITA indices are the fastest to build, because they
only index a few pivot points of each trajectory. Their space costs
(i.e., the index size) are hence also the smallest. DFT indexes all
trajectory segments which has the highest space costs.

kNN query costs. As for kNN querying, the learned measures
outperform the non-learned ones significantly, by some two orders
of magnitude. The fastest learned measure TrajCL is 984 times and
410 times faster than the fastest non-learned measure Fréchet when
querying on GPU and CPU, respectively. Both DFT and DITA are
spatial indices, which suffer in their pruning capability when index-
ing objects with highly skewed aspect ratios, such as trajectories
which are long and thin. The trajectories that cannot be pruned
require expensive similarity computations with the non-learned
measures. In contrast, the learned measures use the vector index
IVF. The embeddings are pre-computed, and the similarity scores
are now computed by simple embedding scans, which is highly
efficient. This set of results confirms an important advantage of
the learned measures, i.e., their embeddings can be indexed that
enable fast kNN queries, even using just generic vector indices.
Such results motivate further development of dedicated indices for
even faster embedding-based kNN query processing.

Overall kNN query accuracy. In Table 7, the HR@50 values in-
dicate how accurately the top 50 trajectories returned by the learned
measures approximate those returned by the non-learned measures



Table 7: kNN query accuracy (HR@50)
DTW ERP Fréchet Hausdorff

NEUTRAJ | 0.629 0.417 0.671 0.678

T3S 0.514 0.756 0.756 0.657

TrajCL 0.528  0.421 0.814 0.831

TrjSR 0.521 0.377 0.630 0.757

TrajGAT 0.561 0.287 0.320 0.286

(recall that the learned measures are trained to approximate the
non-learned ones). Overall, none of the learned measures return
fully accurate results, and their HR@50 are lower than 0.7 in most
cases, suggesting opportunities to explore models that can better
approximate the non-learned measures. While there are exceptions,
the models appear to achieve higher HR@50 scores approximating
Fréchet and Hausdorff than approximating DTW and ERP. This
suggests that DTW and ERP are more difficult to be approximated
(by the learned measures tested) than Fréchet and Hausdorff - sim-
ilar observations have been reported for DTW [76, 79]. TrajCL, in
particular, achieves HR@50 > 0.8 for these two measures.
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Figure 12: Training time of the learned measures vs. kNN
query accuracy (the numbers are model convergence times)

kNN query accuracy vs. trajectory similarity model train-
ing time. Figure 12 reports HR@50 of the learned measures, where
the model training time is constrained from 20 to 60 minutes. Note
that the trajectory similarity model training time is excluded from
the index build times reported above (and is excluded from all the
other sets of results), i.e., the last set of experiments assumes trained
similarity measures. This set of results further provides guidance
on model selection for applications with time constraints on system
preparation from scratch or model retraining.

The figure shows that when the model training time is very
limited, e.g., 20 minutes, T3S is generally the best option, except
that TrajCL is 6% more accurate than T3S when approximating
Hausdorff. When the training time increases to 40 minutes, TrajCL
performs the best to approximate the non-learned measures except
for the ERP (for which T3S remains the best). This is because T3S
uses a vanilla attention model that is faster to train, while TrajCL
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uses a multi-view attention model that takes more time to train but
may produce higher accuracy given enough time. These results also
confirm the superiority of using attention models to learn trajectory
similarity, especially when the training time is limited.

4.3.3 Impact of Indices for Learned Measures. We compare the
default IVF index with the flat index (FLAT) and the hierarchi-
cal navigable small world index (HNSW) [48] for trajectory kNN
queries. FLAT stores the full trajectory embeddings of the input
dataset D and performs full scans for similarity searches. HNSW
creates a navigable small world graph based on the embeddings
and uses hierarchical skip lists to link graph nodes to speed up
the search. Both HNSW and IVF return approximate query results.
We repeat the experiments of batched kNN queries on Xi’an. We
report the index build time, the query time on GPU, and the query
accuracy to approximate the Hausdorff measure.

Table 8 presents the results. Overall, the three indices have simi-
lar build times, which include and are dominated by the embedding
computation times. HNSW takes the longest to build because of
its complex graph structure, which in turn helps it to achieve the
fastest query times while sacrificing the accuracy. On the oppo-
site, FLAT is the fastest to build, while it is the slowest for query
processing because of its brute-force query strategy. FLAT is still
inaccurate, because the embeddings are approximations of the raw
trajectories. IVF has the best balanced performance. It builds as fast
as FLAT, is fast at query processing, and has a good accuracy.

Table 8: Index comparison for the learned measures

Measure Building time Query time Query accuracy
FLAT HNSW IVF |FLAT HNSW IVF|FLAT HNSW IVF
NEUTRAJ| 48.87 53.22 49.15| 4.09 0.61 0.98| 0.717 0.661 0.678
T3S 57.69  69.99 5839 391 0.51 0.96| 0.694 0.628 0.657
TrajCL 46.92 5831 47.88| 390 043 0.89| 0.879 0.819 0.831
TrjSR 162.63 183.42 171.15| 6.32 133  2.42| 0.796 0.731 0.757
TrajGAT [660.74 667.25 661.69| 10.13 6.19 6.62| 0.327 0.259 0.286
4.3.4 Impact of the Size of the Trajectory Dataset |D|. We vary the

size of the trajectory dataset |D| from 10* to 10°. The indices of the
non-learned measures are consistently faster to build, while the
learned measures are faster at query processing. We report detailed
results in the technical report [5] due to space limit here.

4.4 Trajectory Clustering

4.4.1 Setup. We follow the commonly used trajectory clustering
paradigm [80, 83]. For the non-learned measures, we apply the
k-medoids algorithm [52] to cluster the raw trajectories. For the
learned measures, we apply k-medoids on the embeddings.

The default dataset D consists of 1,000 randomly sampled trajec-
tories from a dataset, where the number of points on trajectories n
is between 20 and 200. The number of clusters k is 10 by default.

Trajectory clustering based on learned measures is also an ap-
proximation of that based on non-learned measures. We follow
the literature and use the rand index (RI) to evaluate clustering
accuracy. RI computes the percentage of the ground-truth similar
trajectory pairs (derived based on non-learned measures) that are
assigned to the same cluster. We again report results on Xi’an.



Table 9: Detailed time and space costs of batched trajectory
clustering on Xi’an

Time on GPU Time on CPU Space

Measure
Pre. Emb. Clst. Total|Pre. Emb. Clst. Total| (GB)
DTW 0.60 - 322 3.82]0.24 - 226.09 226.33| 0.02
ERP 0.60 - 370 4.29|0.25 - 436.48 436.73| 0.02
Fréchet | 0.60 - 326 3.86|0.24 - 223.68 223.92| 0.02
Hausdorff | 0.61 - 337 3.98/0.25 - 167.60 167.85| 0.02
'NEUTRAJ[0.26 0.17 0.27 0.70/035 087 021 143| 088
T3S 0.40 0.02 031 0.74/047 226 034 3.06| 2.74
TrajCL 0.36 0.01 033 0.70/0.40 140 031 211| 235
TrjSR 0.52 0.05 0.41 097|058 17.12 031 18.01| 9.12
TrajGAT |6.82 035 022 7.39|7.56 6.87 032 14.75| 2.08
STEDR 0.79 - 3.64 4.42|1.09 - 386.26 387.34| 0.02
CDDS 0.82 - 335 4.17|1.08 - 171.42 172.50| 0.02
SAR 0.81 - 392 4.73|1.09 - 167.04 168.13| 0.03
RSTS ~ [6.22 005 031 658/637 097 031 7.65 038

4.4.2  Overall Results. Tables 9 and 10 report the results. Overall,
the learned measures are faster than the non-learned ones, while they
take more memory space and serve inaccurate results.

Clustering costs. We use the clustering time (“Clst”) to mea-
sure the time to cluster the raw trajectories with the non-learned
measures or to cluster the embeddings for the learned measures.
We only compute the embeddings once and reuse them through-
out the clustering process. Thus, the learned measures offer faster
clustering (while they require higher space costs for embeddings),
as shown in Table 9. For the same reason, the embedding times
(“Emb.”) reported in Table 9 are much lower than those reported
in Table 4 where the embeddings are recomputed every time.

Table 10: Clustering accuracy (RI)

DTW ERP Fréchet Hausdorff
NEUTRAJ | 0.885 0.811 0.811 0.874
T3S 0.832 0.816 0.823 0.820
TrajCL 0.816 0.817 0.827 0.811
TrjSR 0.708 0.718 0.746 0.799
TrajGAT 0.808 0.646 0.712 0.433

Clustering accuracy. Table 10 shows the accuracy results. Sim-
ilar to the kNN results in Table 7, NEUTRA] is strong for DTW,
while TrajCL approximates ERP and Fréchet well, and no learned
measures can approximate the non-learned ones fully accurately.

4.4.3 Impact of the Size of Trajectory Dataset |D|. We vary |D| from
100 to 10,000. Like above, clustering with non-learned measures
generally consumes more time than that with the learned ones. We
report detailed results in the technical report [5] due to space limit.

5 FUTURE WORK

The empirical study reveals that: (1) The learned measures are
slower than the non-learned ones when computing trajectory simi-
larity on the fly. (2) The learned measures are faster than the non-
learned ones for kNN queries and clustering when the embeddings
can be pre-computed, although there is no accuracy guarantee.
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(3) Self-attention network-based measures are relatively fast to
train to obtain a high accuracy of trajectory similarity.

These results motivate important questions for future work:
(RQ1) Can learned measures also outperform the non-learned ones
for online similarity computation? (RQ2) Can a learned measure
approximate a wide range of different non-learned measures all with
a high accuracy? (RQ3) Can learned measures approximate the non-
learned ones with accuracy guarantees? (RQ4) Can non-learned
measures be indexed to achieve higher kNN query efficiency?

Here, we present an attempt to answer the first two questions.

To answer RQ1, we make use a feedforward neural network (FFN)
as the trajectory encoder, which is arguably the simplest and most
efficient deep learning model. We use a two-layer FFN, where the
inputs are raw two-dimensional coordinates of the points on a
trajectory, for efficiency considerations. We find that such a model
can compute trajectory similarity online as fast as Hausdorff, while
its HR@50 drops to 0.591 (0.831 for TrajCL) for kNN queries and RI
drops to 0.502 (0.811 for TrajCL) for clustering when approximating
Hausdorf (full results in the technical report [5]).

Such results show the potential of learned measures to obtain a
high efficiency for trajectory similarity computation, thus meeting
their original promise, while they also highlight the challenges in
obtaining high query and clustering accuracy at the same time.

For RQ2, we argue that large language models (LLM) [53, 61] have
a strong potential to learn a generic measure for approximating
different non-learned measures. LLMs are trained on large text
corpora to learn sequential patterns of texts. Since trajectories are
also sequences, it would be interesting to study how LLMs can be
adapted for numeric sequences. When an LLM is trained with a large
trajectory corpus, it could be instruction-tuned to compute different
trajectory similarity measures given different input prompts.

In addition, our study has focused on trajectory similarity in a
low-dimensional Euclidean space. There are rich studies on trajecto-
ries over road networks [29, 33, 56, 66] as well as multi-dimensional
time series (high dimensional trajectories) [41, 49, 50, 74]. An em-
pirical study with such data will also be an interesting future work.

6 CONCLUSION

We revisited both non-learned and learned trajectory similarity
measures and studied their empirical efficiency comprehensively.
The learned measures outperform the non-learned measures as
promised in literature, only when trajectory embeddings can be pre-
computed. Meanwhile, such measures lack accuracy when approxi-
mating the non-learned measures. Among the learned measures, the
self-attention ones are the fastest to train and offer the highest ac-
curacy. The non-learned measures do not require pre-computation
and are more suitable for one-off similarity computation. These re-
sults open up research opportunities in designing advanced learned
measures with even higher efficiency and accuracy.
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