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ABSTRACT

Real-time fraud detection is a challenge for most financial and elec-
tronic commercial platforms. To identify fraudulent communities,
Grab, one of the largest technology companies in Southeast Asia,
forms a graph from a set of transactions and detects dense sub-
graphs arising from abnormally large numbers of connections among
fraudsters. Existing dense subgraph detection approaches focus on
static graphs without considering the fact that transaction graphs are
highly dynamic. Moreover, detecting dense subgraphs from scratch
with graph updates is time consuming and cannot meet the real-time
requirement in industry. Therefore, we introduce an incremental real-
time fraud detection framework called Spade. Spade can detect fraud-
ulent communities in hundreds of microseconds on million-scale
graphs by incrementally maintaining dense subgraphs. Furthermore,
Spade supports batch updates and edge grouping to reduce response
latency. Lastly, Spade provides simple but expressive APIs for the
design of evolving fraud detection semantics. Developers plug their
customized suspiciousness functions into Spade which incremental-
izes their semantics without recasting their algorithms. Extensive
experiments show that Spade detects fraudulent communities in real
time on million-scale graphs. Peeling algorithms incrementalized by
Spade are up to a million times faster than the static version.
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1 INTRODUCTION

Graphs have been found in many emerging applications, including
transaction networks, communication networks and social networks.
The dense subgraph problem is first studied in [17] and is effective
for link spam identification [4, 16], community detection [8, 11] and
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Figure 1: Grab’s data pipeline for fraud detection
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Figure 2: An example of fraud detection on evolving graphs

fraud detection [7, 19, 29]. Standard peeling algorithms [2, 5, 7, 19, 31]
iteratively peel the vertex that has the smallest connectivity (e.g.,
vertex degree or sum of the weights of the adjacent edges) to the
graph. Peeling algorithms are widely used because of their efficiency,
robustness, and theoretical worst-case guarantee. However, existing
peeling algorithms [6, 19, 31] assume a static graph without consider-
ing the fact that social and transaction graphs in online marketplaces
are rapidly evolving in recent years. One possible solution for fraud
detection on evolving graphs is to perform peeling algorithms peri-
odically. We take Grab’s fraud detection pipeline as an example.

Fraud detection pipeline in Grab (Figure 1). Grab is one of the
largest technology companies in Southeast Asia and offers digital
payments and food delivery services. On the Grab’s e-commerce
platform, 1) the transactions form a transaction graph G. 2) Grab
updates the transaction graphs periodically G = G & AG. Our ex-
periments show that it takes 28s to carry out Fraudar (FD) [19] on a
transaction graph with 6M vertices and 25M edges. Therefore, we
can execute fraud detection every 30 seconds. 3) The dense subgraph
detection algorithm and its variants are used to detect fraudulent
communities. 4) After identifying the fraudsters, the moderators ban
or freeze their accounts to avoid further economic loss. A classic
fraud example is customer-merchant collusion. Assume that Grab
provides promotions to new customers and merchants. However,
fraudsters create a set of fake accounts and do fictitious trading to use
the opportunity of promotion activities to earn the bonus. Such fake
accounts and the transactions among them form a dense subgraph.

ExaMPLE 1.1. Consider the transaction graph in Figure 2, where
a vertex is a user or a store, and an edge represents a transaction.
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Table 1: Comparison of Spade and previous algorithms

DG [6] DW [18] FD [19] | Spade
Dense subgraph detection v v v
Accuracy guarantees v v v v
Weighted graph X v v v
Incremental updates X X X v
Edge reordering X X X v

Suppose a fraudulent community is identified at time Ty and a normal
user becomes a fraudster and participates in suspicious activities at Ty.
Applying peeling algorithms at T, the new fraudster is detected at T5.
However, many new suspicious activities have occurred during the time
period [T, T»] that could cause huge economic losses.

As reported in recent studies [1, 35], 21.4% of the traffic to e-
commerce portals are malicious bots. Fraud detection is challeng-
ing since many fraudulent activities occur in a very short timespan.
Hence, identifying fraudsters and reducing response latency to fraud-
ulent transactions are key tasks in real-time fraud detection.

To address real-time fraud detection on evolving graphs, a better
solution would be to incrementally maintain dense subgraphs. There
are two main challenges of incremental maintenance. First, opera-
tional demands require that fraudsters should be identified in 100
milliseconds in industry. Maintaining the dense subgraph incremen-
tally in such a short timespan is challenging. Second, fraud semantics
continue to evolve and it is not trivial to incrementalize each of them.
Implementing a correct and efficient incremental algorithm is, in
general, a challenge. It is impractical to train all developers with
the knowledge of incremental graph evaluation. To the best of our
knowledge, there are no generic approaches to minimize the cost
of incremental peeling algorithms. Motivated by the challenges, we
design a real-time fraud detection framework, named Spade to detect
fraudulent communities by incrementally maintaining dense sub-
graphs. The comparison between Spade and the previous algorithms
(dense subgraphs (DG) [6], dense weighted subgraph (DW) [18] and
Fraudar (FD) [19]) is summarized in Table 1.

Contributions. In this paper, we focus on incremental peeling algo-

rithms. In summary, this paper makes the following contributions.

o We build three fundamental incremental techniques for peeling al-
gorithms to avoid detecting fraudulent communities from scratch.
Spade inspects the subgraph that is affected by graph updates and
reorders the peeling sequence incrementally, which theoretically
guarantees the accuracy of the worst case.

e Spade enables developers to design their fraud semantics to detect
fraudulent communities by providing the suspiciousness functions
of edges and vertices. We show that a variety of peeling algorithms
can be incrementalized in Spade including DG, DW and FD.

e We conduct extensive experiments on Spade with datasets from
industry. Spade speeds up fraud detection up to 6 orders of magni-
tude since Spade minimizes the cost of incremental maintenance.
Furthermore, the latency of the response to fraud activities can be
significantly reduced. Lastly, once a user is spotted as a fraudster,
we identify the related transactions as potential fraud transactions
and pass them to system moderators. Up to 88.34% potential fraud
transactions can be prevented.

Table 2: Frequently used notations

[ Notation [ Meaning
G/AG a transaction graph / updates to graph G
G o AG the graph obtained by updating AG to G
aj/cij the weight on vertex u; / on edge (u;, u;)
f(S) the sum of the suspiciousness of induced subgraph G[S]
g(S) the suspiciousness density of vertex set S
wy(S) peeling weight, i.e., the decrease in f by removing u from S
[0 a peeling algorithm
O the peeling sequence order w.r.t. Q
sP the vertex set returned by a peeling algorithm
S* the optimal vertex set, i.e, g(S™) is maximized

Algorithm 1: Execution paradigm of peeling algorithms

Input: A graph G = (V, E) and a density metric g(S)
Output: The peeling sequence order O = Q(G) and the fraudulent community
So=V
fori=1,...,|V|do
select the vertex u € S;_y such that g(S;—; \ {u}) is maximized
Si=Si-1\ {u}
O.add(u)
return O and arg maxs; g(S;)

Y S

2 BACKGROUND
2.1 Preliminary

Graph G. We consider a directed and weighted graph G = (V, E),
where V is a set of vertices and E C (V X V) is a set of edges. Each
edge (u;, uj) € E has a nonnegative weight, denoted by ¢;;. We use
N(u) to denote the neighbors of u.

Induced subgraph. Given a subset S of V, we denote the induced
subgraph by G[S] = (S, E[S]), where E[S] = {(v,0)|(u,v) e EAu,v €
S}. We denote the size of S by |S|.

Density metrics g. We adopt the class of metrics g in previous

studies [6, 18, 19], g(S) = %, where f is the total weight of G[S],

i.e., the sum of the weight of S and E[S]:

f8)=>] ai+ D cij 6]
u; €S u;,uj €S N(uj,uj)€E
The weight of a vertex u; measures the suspiciousness of user u;,
denoted by a; (a; > 0). The weight of the edge (u;, uj) measures the
suspiciousness of transaction (u;, u;), denoted by ¢;; > 0. Intuitively,
g(S) is the density of the induced subgraph G[S]. The larger ¢(S) is,
the denser G[S] is.
Graph updates AG. We denote the set of updates to G by AG =
(AV, AE). We denote the graph obtained by updating AG to G as
G ® AG. Since transaction graphs continue to evolve, we consider
edge insertion rather than edge deletion. Therefore, G ® AG = (V U
AV, E U AE). Specifically, we consider two types of updates, edge
insertion (i.e., |AE|= 1) and edge insertion in batch (i.e., |AE|> 1).

2.2 Peeling algorithms

Peeling algorithms (Q) are widely used in dense subgraph mining [6,
19, 31]. They follow the execution paradigm in Algorithm 1 and differ
mainly in density metrics. They are categorized to three categories:
unweighted [6], edge-weighted [18] and hybrid-weighted [19].
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Intialization: G Iteration 1: peel up

u; Uz Uy Us Uy
1 1
2 2
Us Us Uz Us

Iteration 2: peel u3 Iteration 3: peel Uz

Uy Uy
.
Uy Us Us

Peeling sequence order: O = [uy, U3, U2, Uy, Us]

Iteration 4: peel Uy

Figure 3: Example of peeling algorithms

Peeling weight. Specifically, we use wy, (S) to indicate the decrease
in the value of f when the vertex u; is removed from a vertex set S,
i.e, the peeling weight. Previous work [19] formalizes wy, (S):

@

(uj€S) N((uj,ui)€E)

wy; (S) = a; + Cij
(u;€S) N(ui,u;)€E)
Peeling sequence. We use S; to denote the vertex set after i-th peel-
ing step. Initially, the peeling algorithms set So = V. They iteratively
remove a vertex u; from S;_1, such that g(Si—1 \ {%;}) is maximized
(Line 3~4). The process repeats recursively until there are no vertices
left. This leads to a series of sets over V, denoted by So, .. ., S|y | of
sizes |V|,...,0. Then S; (i € [0, |V]]), which maximizes the density
metric ¢(S;), is returned, denoted by S¥. For simplicity, we denote
A = wy,(Si). Instead of maintaining the series S, . . ., S|, we record
the peeling sequence O = [uy,...ujy|] such that {u;} = Si—1 \ S;.

ExaMPLE 2.1. Consider the graph G in Figure 3. uy is peeled since its
peeling weight is the smallest among all vertices. Similarly, us, up, u4, us
will be peeled accordingly. Therefore, the peeling sequence is O =
[u1, us, ug, us, us].

Complexity and accuracy guarantee. In Algorithm 1, Min-Heap is
used to maintain the peeling weights, the insertion cost is O(log|V|).
There are at most |E| insertions. Therefore, the complexity of Algo-
rithm 1 is O(|E|log|V|). We denote the vertex set that maximizes g
by S*. Previous studies [6, 19, 23] conclude that:

LEMMA 2.1. Let ST be the vertex set returned by the peeling algo-
rithms and S* be the optimal vertex set, g(S¥) > %g(S*).

Although peeling algorithms are scalable and robust, we remark
that these algorithms are proposed for static graphs, which takes
several minutes on million-scale graphs. For evolving graphs, com-
puting from scratch is still time-consuming, which cannot meet the
real-time requirement. Moreover, it is not trivial to design incremen-
tal algorithms for peeling algorithms. In this paper, we investigate
an auto-incrementalization framework for peeling algorithms.
Problem definition. Given a graph G = (V, E), a peeling algorithm
0, and the peeling result of Q on G, S¥ = Q(G), our problem is to

efficiently identify the result of Q on G&AG, SP = O(G®AG), where |

AG is the graph updates.
3 THE Spade FRAMEWORK

In this section, we present an overview of our proposed framework
Spade and sample APIs. Subsequently, we demonstrate some exam-
ples on how to implement different peeling algorithms with Spade.
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Figure 4: Architecture and workflow of an edge insertion

3.1 Overview of Spade and APIs
We follow two design goals to satisfy operational demands.

o Programmability. We provide a set of user-defined APIs for
developers to develop their dense subgraph-based semantics
to detect fraudsters. Moreover, Spade can auto-incrementalize
their semantics without recasting the algorithms.

o Efficiency. Spade allow efficient and scalable fraud detection
on evolving graphs in real-time.

Architecture of Spade. Figure 4 shows the architecture of Spade and

the workflow of an edge insertion. Spade automatically incremental-

izes peeling algorithms with the user-defined suspiciousness func-
tions. To avoid computing from scratch, Spade maintains the fraud-

ulent community incrementally with an edge update (Section 4.1).

Batch execution is developed to improve the efficiency of handling

batch updates (Section 4.2). The fraudulent community is identified in

real time and returned to the moderators for further analysis. Given
an edge insertion, the workflow contains the following components:

e VSusp and ESusp. Given a new vertex/edge, these components
are responsible for deciding the suspiciousness of the endpoint of
the edge or the edge with a user-defined strategy.

o IsBenign. This component is used to decide whether a new edge
is benign (Section 4.3). If the edge is benign, it is inserted into an
edge vector pending reordering; otherwise, sequence reordering
is triggered immediately for the edge buffer with this new edge.

e ReorderSeq. This component is responsible for incrementally main-
taining the peeling sequence and deciding the new fraudulent
community with the graph updates detailed (Section 4).

Listing 1: Overview of Spade

class Spade {

public:
Graph LoadGraph(string path){} //Load graph from disk
//Plug in vertex suspiciousness function
void VSusp(function<double(Vertex u, Graph g)> susp) {}
//Plug in edge suspiciousness function
void ESusp(function<double(Edge e, Graph g)> susp) {3}
//Detect the fraudsters on graph _g
set<Vertex> Detect() {3}
//Insert an edge and detect the new fraudsters
set<Vertex> InsertEdge(Edge e) {}
//Insert a batch of edges and detect the new fraudsters
set<Vertex> InsertBatchEdges(Edge* e_arr) {3}

private:
Graph _g; //Graph
vector<Vertex> _seq; //Peeling sequence
vector<double> _weight; //Peeling weights
vector<Edge> _benign_edges; //Store the benign edges
bool IsBenign(Edge e) {} //Judge if an edge is benign
void ReorderSeq(){} //Reorder the peeling sequence



APIs and data structure (Listing 1). We provide APIs for devel-
opers to customize and deploy their peeling algorithms for differ-
ent application requirements. Developers can customize VSusp and
ESusp to develop their fraud detection semantics. We design two
APIs for edge insertion, namely InsertEdge and InsertBatchEdges.
The Detect function spots the fraudulent community on the cur-
rent graph. IsBenign and ReorderSeq are two built-in APIs which
are transparent to developers. They are activated when new edges
are inserted. Spade uses the adjacency list to store the graph. Two
vectors _seq and _weight are used to store the peeling sequence and
the peeling weights.

Characteristic of density metrics. We next formalize the sufficient
condition of the density metrics that can be supported by Spade.

PROPERTY 3.1. If 1) g(S) is an arithmetic density, i.e., g = sl 2)

IS~
a; > 0, and 3) cjj > 0, then g(S) is supported by Spade.

The correctness is satisfied since Spade correctly returns the peel-
ing sequence order (detailed in Section 4). We also characterize the
properties of these popular density metrics in Appendix E of [20].

Instances. We show that popular peeling algorithms are easily imple-
mented and supported by Spade, e.g., DG [6], DW [18] and FD [19].
We take FD as an example and leave the discussion of the other
instances in the Appendix F of [20]. To resist the camouflage of
fraudsters, Hooi et al. [19] proposed FD to weight edges and set the
prior suspiciousness of each vertex with side information. Let S C V.
The density metric of FD is defined as follows:

f(S)  Zu;es @i + Xy u;eS Ausuj)eE Cij
9(8) = 5o = ®)
IS IS

To implement FD on Spade, users only need to plug in the sus-
piciousness function vsusp for the vertices by calling VSusp and
the suspiciousness function esusp for the edges by calling ESusp.
Specifically, 1) vsusp is a constant function, ie., given a vertex u,
vsusp(u) = a; and 2) esusp is a logarithmic function such that given

an edge (uj, uj), esusp(u;, uj) = m where x is the degree of the

object vertex between u; and uj, and c is a positive constant [19].

Developers can easily implement customized peeling algorithms
with Spade, which significantly reduces the engineering effort. For
example, users write only about 20 lines of code (compared to about
100 lines in the original FD [19]) to implement FD.

4 INCREMENTAL PEELING ALGORITHMS

In this section, we propose several techniques to incrementally iden-
tify fraudsters by reordering the peeling sequence O with graph
updates, i.e., the peeling sequence on G & AG, denoted by O’.

4.1
Given a graph G = (V, E), the peeling sequence O on G and the graph
updates AG = (AV, AE), where |AE|= 1, Spade returns the peeling
sequence O’ on G & AG.

Vertex insertion. Given a new vertex u, we insert it into the head
of the peeling sequence and initialize its peeling weight by Ag = 0.

Sequence reordering with edge insertion

Insertion of an edge (u;, u;). Without loss of generality, we assume
i < j and denote the weight of (u;, uj) by A = c;;. Given an edge
insertion (u;, u;j), we observe that a part of the peeling sequence will
not be changed. We formalize the finding as follows.

LEMMA 4.1. O'[1:i—-1]=0[1:i-1].

Due to space limitations, all the proofs in this section are presented
in Appendix A of [20].
Affected area (G5) and pending queue (T). Given updates AG
to graph G and an incremental algorithm 7°, we denote by Gg=
(Vg Eq) the subgraph inspected by 7~ in G that indicates the neces-
sary cost of incrementalization. Moreover, we construct a priority
queue T for the vertices pending reordering in ascending order of
the peeling weights.
Incremental algorithm (77). 7 initializes an empty vector for the
updated peeling sequence O’ and append O[1 : i — 1] to O due to
the Lemma 4.1. We iteratively compare 1) the head of T, denoted by
Umin and 2) the vertex uy in the peeling sequence O, where k > i.
The corresponding peeling weights are denoted by A, and Ay.. We
consider the following three cases:
Case 1. If Ay < Ak, we pop the uyy from T and insert it to O’.
Then we update the priorities in T for the neighbors of umnin, N(tumin)-
Case 2. If Apin > Ag and Jur € T,(ur,ur) € E or (ug,ur) €
E, we insert uy into T. The peeling weight is wy, (T U Sg) = Ay +
Zur €T) M(ur.u)€E) CTk* Eur €T) A(ueur)eE) kT: k =k + 1.
Case 3. If Apin > Ay and Vur € T, (ur, ug) ¢ E and (ug, ut) ¢ E, we
insert ug to O’, k = k + 1.

We repeat the above iteration until T is empty.

ExaMPLE 4.1. Consider the graph G in Figure 3 and its peeling
sequence O = [u1,us, ug, ug, us). Suppose that a new edge (ui, us) is
inserted into G and its weight is 4 as shown in the LHS of Figure 5.
The reordering procedure is presented in the RHS of Figure 5. uj is
pushed to the pending queue T. Since the peeling weight of the next
vertex in O, us, is the smallest, it will be inserted directly into O’. Since
uy € N(uq), we recover its peeling weight and push it into T. Since the
peeling weights of uz and uy are smaller than those of ug, they will pop
out of T and insert into O’. Once T is empty, the rest of the vertices,
ug and us, in O are appended to O directly. Therefore, the reordered
peeling sequence is O’ = [us, ug, uy, u4, us].

Remarks. If the peeling weight of u. is greater than that of the head
of T (i.e., umin), then upyi, has the smallest peeling weight among
T U Si. We formalize this remark as follows.
LEMMA 4.2. IfAg > Amin, Umin = arg min wy, (T U Sg.).

ueTUSy
Correctness and accuracy guarantee. In Case 1 of 7, if A >
Amin, Umin is chosen to insert to O’ since it has the smallest peeling
weight due to Lemma 4.2. In Case 3 of 7, A is the smallest peeling
weight and uy is chosen to insert to O’. The peeling sequence is
identical to that of G ® AG, since in each iteration the vertex with the
smallest peeling weight is chosen. The accuracy of the worst-case is
preserved due to Lemma 2.1.
Time complexity. The complexity of the incremental maintenance
is O(|Eq|+|E7|log|V|). The complexity is bounded by O(|E|log|V])
and is small in practice.

4.2 Sequence reordering in batch

Since the peeling sequence reordering by early edge insertions could
be reversed by later ones, some reorderings are stale and duplicate.
Suppose that the insertion is a subgraph AG = (AV, AE). A direct
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Peeling Sequence after reordering: O’ = [ug, u2, u1, us, us)

Graph G and
O = [u1,u3, u2,us, us) [u1,us, uz, ua,us] [u1, us, uz, ua, us) [u1, usz, uz, ua, us)
up us uy

Uz Us
insertion of (u1,us)

LHS ing weight

1) ug has smallest peel- 2) uy is inserted into T 3) uz has smallest peeling 4) w; has smallest peeling

[y, us, uz, ug, us)

oo o oo
5) us and us are ap-

pended to O’ when T

is empty

weight. Pop uz from T. weight. Pop u; from T.

RHS

Figure 5: Peeling sequence reordering with edge insertion (A running example)

Case 2: if Apin
or o uy
®-
Olk:n] o
insert uy, to O Ok in)
[[7: Pending queue N(u): the neighbors of u O: the peeling sequence order]

Figure 6: Peeling sequence reordering in batch

Ui Q\ @-( -~
\ s \
2% .
[ ! > fraudulent community SP
{ /
@/ _ s
uj &y ‘®@ @ @: four new transaction edges

Figure 7: Illustration of stale incremental maintenance

way to reorder the peeling sequence is to insert the edges one by one.
The complexity is O(|AE|(|Eg-|log|Vy])) which is time consuming.
To reduce the amount of stale computation, we propose a peeling
sequence reordering algorithm in batch.

EXAMPLE 4.2. Consider a fraudulent community, ST, identified by
the peeling algorithm in Figure 7. u; and uj are two normal users.
Suppose that they have the same peeling weight and that u; is peeled
before uj. When a new transaction D) is generated, we should reorder
u; and uj by exchanging their positions. When (2) and (3) are inserted,
positions of u; and uj will be re-exchanged. However, if we reorder the
sequence in batch with the last transaction (@), we are not required to
change the positions of u; and u;.

Peeling weight recovery. Given a vertex uj = O[j] and a set of ver-
tex S; (i < j,ie,Sj C Si), the peeling weight wy; (S;) can be calculated
by wu; (Si) = Aj+ (i <k<j) A(ujue)€E) Cjk * Z(i <k <) AM(ugos;) €E) Ckj-
Vertex sorting. Intuitively, the increase in peeling weight of u; does
not change the subsequence of O[1 : i — 1] due to Lemma 4.1. We
sort the vertices in AV by the indices in the peeling sequence. Then
we reorder the vertices in ascending order of the indices in O. For
simplicity, we color the vertices in AV black, affected vertices (i.e.,
vertices pending reordering) gray and unaffected vertices white.

Incremental maintenance in batch (Algorithm 2 and Figure 6).
We initialize a pending queue T to maintain the vertices pending
reordering (Line 2). Iteratively, we add the vertex O[i] € AV to T
and color its neighbors O[j] gray (Line 5-6). If T is not empty, we
compare the peeling weight Ay of the vertex u. = O[k] (k > i) with
the peeling weight A, of the head of T, upi,. We consider the
following two cases as shown in Figure 6. Case 1: If Apin < Ag,
We pop Umin from T, insert it to O’ and update the priorities of its

Algorithm 2: Peeling sequence reordering in batch

Input: Graph G = (V, E), O, density metric g(S), AG = (AV, AE)

Output: Peeling sequence order O’ = Q(G @ AG) and fraudulent community
sort AV in the ascending order of indices in O and color AV black

init a priority pending queue T in the ascending order of peeling weights

init an empty vector O’
for u; = O[i] € AV do
add u; into T
color its neighbors O[j] (j > i) gray
k=i+1
while T is not empty do
if Amin < Ak then // Case 1
10 POP Umin from T and insert it to O’
‘ update the priorities of N(umin) in T

C ® N A A W N e

12 else
13 if uy is black or gray then // Case 2(a)
14 add uy into T and recover its peeling weight
‘ color its neighbors N(ug) gray
16 else // Case 2(b): uy is white
‘ insert ug to O’
18 k=k+1
19 append Ol[k : i’ — 1] to O’, where uy = O[i’] is the next black vertex
20 return O’ and arg maxs; g(S;)

neighbors in T (Line 9-11); Case 2(a): if Apin > Ay and uy is gray
or black, we recover its peeling weight in S U T and insert it to
T. Then we color the vertices in N(uy) gray (Line 12-15); otherwise
Case 2(b): if Apin > Ay and uy is white, we insert uy to O’ directly
(Line 16-18). We repeat the above procedure until the pending queue
T is empty. Then we append O[k : i’ — 1] to O’, where uy is the next
vertex in AV. We insert uy into T and repeat the reordering until
there is no black vertex. The correctness and accuracy guarantee are
similar to those of peeling sequence reordering with edge insertion.
Due to space limitations, we present them in Appendix D of [20].
Complexity. The time complexity of Algorithm 2 is O(|Eq|+|E|
log|V#|) which is bounded by O(|E|log|V]).

4.3 Sequence reordering with edge grouping

Update stream AG”. In a transaction system, the edge updates are
coming in a stream manner (i.e., a timestamp on each edge) which is
denoted by AG”. Formally, we denote it by AG” = [(eg, 70), - - - (€n, Tn)]
where 7; is the timestamp on the edge e; = (u;, v;).

Latency of activities £(AG?). Suppose that e; = (u;, v;) is a labeled
fraudulent activity which is generated at 7; and is responded/inserted
at 7] . The latency of e; is 7] — 7;. Given an update stream AG?, the
latency of fraudulent activities is defined as follows.

LNG) = > 1

(e:,7:)€AGT

-7 (4)
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Figure 8: Metrics for fraudulent transactions made by a fraudster
\{ei\fi>ff}|)

(latency: TF—Ti, queueing time: 75— 7;, prevention ratio: R = e
1

Prevention ratio R. If a fraudster is identified, we ban the following
related transactions to prevent loss. We denote the ratio of suspicious
transactions prevented to all suspicious transactions by R.

EXAMPLE 4.3. Consider an update steam in Figure 8. e; (i € [1,6])
are a set of labeled fraudulent transactions and t; (i € [1,6]) are their
timestamps. Regarding the reordering in batch, the new transactions
are queueing until the size of the queue is equal to the batch size. The
reordering is triggered at s and finished at t¢. Therefore, they are
inserted at t] =ty The queueing time for each edge is ts — t; while
the latency is Ty — 1i. Suppose the fraudster is identified at 7y, the
[{eilri>tr}

{ei}

Spade aims to reduce £ and increase R as much as possible. In
Figure 8, if the reordering is triggered at 7s = 72 and responded at
7y = 13, the following fraudulent activities can be prevented.

Intuitively, some transactions are generated by normal users (be-
nign edges), while others are generated by potential fraudsters (ur-
gent edges). Spade groups the benign edges and reorders the peeling
sequence in batch. It can both improve the performance of reorder-
ing and reduce the latency of the response to potential fraudulent
transactions. We define the benign and urgent edges as follows.

prevention ratio is R =

DEFINITION 4.1. Given an edge e = (u;, uj) and its weight c;j, if
wy; (So) + cij = g(SP) or wy;(So) + ¢ij = g(SP), e is an urgent edge;
otherwise e is a benign edge.

Given a benign edge insertion (u;, u}), neither u; nor u; belongs to
the densest subgraph (Lemma 4.3). And the insertion cannot produce
a denser fraudulent community by peeling algorithms (Lemma 4.4).

LEMMA 4.3. Given an edge e = (uj, uj), if e is a benign edge, after
the insertion of e, u; ¢ S* anduj ¢ S*.

We denote the vertex subset returned after reordering by S¥ "

LEMMA 4.4. Given a benign edge e = (u;, uj) insertion, at least one
of the following two conditions is established: 1) u; ¢ SP" and uj ¢ sP';
and 2) g(S¥') < g(SF).

Therefore, we postpone the incremental maintenance of the peel-
ing sequence for benign edges which provide two benefits. First, we
can perform a batch update that avoids stale computation. Second,
an urgent edge insertion, which is caused by a potential fraudster,
triggers incremental maintenance immediately. These fraudsters are
identified and reported to the moderators in real time.

Edge grouping. We next present the paradigm of peeling sequence
reordering by edge grouping. We first initialize an empty buffer AG
for the updates (Line 1). When an edge e; enters, we insert it into

Algorithm 3: Paradigm of edge grouping

Input: A graph G = (V, E), O, a density metric g(S), AGT
Output: Peeling sequence order O’ = Q(G & AGT) and fraudulent community
init an empty buffer AG for updates
fori=1,...,mdo
AG.add(e;)
if e; is an urgent edge then
O’ = Q(G ® AG) by Algorithm 2
clear AG
return O’ and arg maxs; g(S;)

R I T I

Table 3: Statistics of real-world datasets

Datasets 4 |E| avg. degree | Increments Type
Grab1 3.991M 10M 5.011 M Transaction
Grab2 4.805M 15M 6.243 1.5M Transaction
Grab3 5.433M 20M 7.366 2M Transaction
Grab4 6.023M 25M 8.302 2.5M Transaction

Amazon [26] 28K 28K 2 2.8K Review
Wiki-vote [25] 16K 103K 12.88 103K Vote
Epinion [25] 264K 841K 6.37 84.1K ‘Who-trust-whom

AG. If ¢; is an urgent edge, we incrementally maintain the peeling
sequence by Algorithm 2 and clear the buffer (Line 4-6).

5 EXPERIMENTAL EVALUATION

Our experiments are run on a machine that has an X5650 CPU,
16 GB RAM. The implementation is made memory-resident and
implemented in C++. All codes are compiled by GCC-9.3.0 with -O3.
Datasets. We conduct the experiments on seven datasets (Table 3).
Four industrial datasets are from Grab (Grab1-Grab4). Given a set of
transactions, each transaction is represented as an edge. We replay
the edges in the increasing order of their timestamp. If a user u;
purchases from a store u;, we add an edge (u;, u;) to E. Specifically,
we construct the graph G as initialization (V and 90% of E as the
initial graph), and the remaining 10% of E as increments for testing.
The increments are decomposed into a set of graph updates AG in the
increasing order of their timestamp with different batch sizes |AE|.
We also use three popular open datasets including Amazon [26], Wiki-
vote [25] and Epinion [25]. Since there are no timestamps on these
three datasets, we randomly select 10% edges from E as increments.
Competitors. We choose three common peeling algorithms (DG,
DW and FD) as a baseline. Given an edge insertion, these algo-
rithms identify the fraudulent community on the entire graph from
scratch. We demonstrate the performance improvement of our pro-
posal (IncDG, IncDW and IncFD) implemented in Spade. We denote
batch updates by IncDG-x, IncDW-x and IncFD-x, where x = |AE]| is
the batch size. We also denote the reordering of the peeling sequence
with edge grouping by IncDGG, IncDWG and IncFDG.

5.1 Efficiency of Spade

Improvement of incremental peeling algorithms. We first inves-
tigate the efficiency of Spade by comparing the performance between
incremental peeling algorithms and peeling algorithms. In Figure 10,
our experiments show that IncDG (resp. IncDW and IncFD) is up to
4.17 % 10 (resp. 1.63 x 10° and 1.96 X 10°) times faster than DG (resp.
DW and FD) with an edge insertion. The reason for such a significant
speedup is that only a small part of the peeling sequence is affected
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Table 4: Time taken for incremental maintenance with Spade by varying batch sizes (avg. time for one edge, - means < 1us)

[ [ Peeling algorithms (seconds) H |AE|= 1 (us) [ |AE|= 10 (us) [ |AE|= 100 (us) [ |AE|= 1K (us) [ |AE|= 100K (us) ]
Datasets | DG | DW FD IncDG | IncDW | IncFD | IncDG | IncDW | IncFD | IncDG | IncDW | IncFD | IncDG | IncDW | IncFD | IncDG | IncDW | IncFD
Grab1 12 14 12 6517 17469 6 3117 11613 6 519 1983 6 108 281 6 5 10 1
Grab2 17 20 16 6604 18413 8 3484 11280 8 634 1782 8 138 249 8 7 8 2
Grab3 23 27 22 6716 18862 11 3864 10892 11 750 1560 10 186 211 10 8 7 2
Grab4 27 28 28 6562 17469 14 4108 11661 12 878 1970 13 206 267 12 10 9 3
Amazon | 0.49 | 0.53 0.43 350 342 1 186 191 - 29 30 - 7 6 - - - -
Wiki-Vote | 0.022 | 0.021 0.017 184 149 2 98 84 1 29 28 1 5 5 - - - -
Epinion 0.25 | 0.26 0.23 170 151 5 83 80 3 32 30 2 10 10 2 1 1 -

Table 5: Elapsed time (£) and latency (L) of static algorithms and incremental algorithms(E: The average elapsed time for one
edge; L is defined by Equation 4. £ of IncDG (resp. IncDW and IncFD) is normalized to £ of DG (resp. DW and FD))

3500

[ [ Peeling algorithms (seconds) ] [AE]= 1K (us) [ Edge grouping (us) |
Datast DG DW FD IncDG IncDW IncFD IncDGG IncDWG IncFDG
ETL]ETL]ETCL & L & L ]16& & L & L & L
Grabl | 12 | 1 | 14 | 1 |12 | 1 || 108 | 293 | 281 | 2.51 | 6 | 2.93 | 24 | 0.024 | 29 | 0.029 | 5 | 0.0042
Grabz | 17 | 1 | 20 | 1 | 16 | 1 || 138 | 137 | 249 | 1.21 | 8 | 143 | 28 | 0.028 | 32 | 0.032 | 7 | 0.0050
Grab3 | 23 | 1 | 27 | 1 |22 | 1 || 186 | 0.98 | 211 | 0.87 | 10 | 1.03 | 28 | 0.028 | 29 | 0.019 | 8 | 0.0066
Grabd | 27 | 1 | 28 | 1 | 28 | 1 || 206 | 0.76 | 211 | 0.74 | 10 | 0.76 | 29 | 0.029 | 33 | 0.024 | 10 | 0.0073
1 9x10* . . . . . .
osf sy e an edge insertion keeps decreasing. As indicated in Example 4.2, the
Incl
o0 X '.Llc[g‘é%:ig 4:2: reordering of the peeling sequence by early edge insertions could
g noDG- . . .
gos § swo* be reversed by later ones. Reordering the peeling sequence in batch
05 10 . . . .
Sos o} & avoids such stale incremental maintenance by reducing the reversal.
o ‘2:2: Impact of edge grouping. As shown in Table 5, IncDGG (resp.
o1 0ut0? IncDWG and IncFDG) is up to 7.1 (resp. 9.7 and 1.25) times faster

200
Latency (ms)

Degree

(a) Prevention ratio vs. latency (b) Graph degree distribution

Figure 9: Graph characteristic

Static algos. vs Incremental algos.

Elapsed Time (us)

S, G

%, %, %, %

%, %,

%, 4,
P,
K4 o

Figure 10: Efficiency comparison between peeling algorithms
and corresponding incremental versions on Spade (|AE|= 1)

for most edge insertions. This is also consistent with the time com-
plexity comparison of those algorithms. In fact, our algorithm on
average processes only 3.5x 1074, 7.2x 107 and 2.5 x 10~/ of edges
compared with DG, DW and FD (on the entire graph), respectively.
Spade identifies and maintains the affected peeling subsequence
rather than recomputes the peeling sequence from scratch. Thus,
Spade significantly outperforms existing algorithms.

Impact of batch sizes |AE|. We evaluate the efficiency of batch
updates by varying batch sizes |AE| from 1 to 100K. As shown in
Table 4, IncDG-100K (resp. IncDW-100K and IncFD-100K) is up to
1211 (resp. 3448 and 4.47) times faster than IncDG (resp. IncDW and
IncFD). When the batch size increases, the average elapsed time for

than IncDG-1K (resp. IncDW-1K and IncFD-1K) since the edge group-
ing technique generally accumulates more than 1K edges. Another
evidence is that the graph follows the power law, as shown in Fig-
ure 9b. Most edge insertions are benign and are processed in batch.
Scalability. We next evaluate the scalability of Spade on Grab’ s
datasets (Grab1-Grab4) of different sizes which is controlled by the
number of edges |E|. We vary |E| from 10M to 25M as shown in
Table 3 and report the results in Table 4. All peeling algorithms scale
reasonably well with the increase of |E|. With |E| increasing by 2.5
times, the running time of Spade increases by up to 2 (resp. 2 and 3)
times for DG (resp. DW and FD).

We also compare the efficiency of DG, DW and FD. As shown
in Columns 2 ~ 4 of Table 4, the peeling algorithms have a simi-
lar performance. However, IncFD is much faster than IncDG and
IncDW since the affected peeling subsequence is smaller due to the
suspiciousness function of FD [19].

5.2 Effectiveness of Spade

Latency. Our experiment reveals that when the batch size increases,
the latency of the batch peeling sequence increases (shown in Fig-
ure 11). For example, the latency of IncDG (resp. IncDW and IncFD)
is 0.76 (resp. 0.74 and 0.76). We remarked that 99.99% of the latency of
IncDG, IncDW and IncFD is the queueing time, i.e., Spade accumu-
lates enough transactions and processes them together. Furthermore,
the latency in Grab1 is higher than that in Grab4. For example, the
latency of IncFD in Grab1 (resp. Grab4) is 2.93 (resp. 0.76). This is
because the queueing time on Grab1 is longer than that on Grab4.
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Figure 11: Elapsed time and latency by varying batch sizes

Prevention ratio. As shown in Figure 9a, the prevention ratio con-
tinues to decrease as latency increases on Grab’s datasets. Our re-
sults show that IncDGG (resp. IncDWG and IncFDG) can prevent
88.34% (resp. 86.53% and 92.47%) of fraudulent activities. IncDG-1K
(resp. IncDW-1K and IncFD-1K) can prevent 28.6% (resp. 41.18% and
92.47%) of fraudulent activities by excluding queueing time.

Case studies. We next present the effectiveness of Spade in discov-
ering meaningful fraud through case studies in the datasets of Grab.
There are three popular fraud patterns as shown in Figure 12. First,
customer-merchant collusion is the customer and the merchant per-
forming fictitious transactions to use the opportunity of promotion
activities to earn the bonus (Figure 12(a)). Second, there is a group
of users who take advantage of promotions or merchant bugs, called
deal-hunter (Figure 12(b)). Third, some merchants recruit fraudsters
to create false prosperity by performing fictitious transactions, called
click-farming (Figure 12(c)). All three cases form a dense subgraph
in a short period of time.

We investigate the details of the customer-mercant collusion in
Figure 12(d). IncDG and DG start both at Ty. Under the semantic of
DG, the user becomes a fraudster at T; (one second after Tp). IncDG
spots the fraudster at T; with negligible delay. However, DG cannot
detect this fraud at Ti, as it is still evaluating the graph snapshot
at Ty. By DG, this fraudster will be detected after the second round
detection of DG at T (about 60 seconds after Tp). During the time
period [Ti, Tz], there are 720 potential fraudulent transactions gener-
ated. Similar observations are made in the other two cases. Due to
space limitations, they are presented in Appendix B of [20].

6 RELATED WORK

Dense subgraph mining. A series of studies have utilized dense
subgraph mining to detect fraud, spam, or communities on social net-
works and review networks [19, 28, 29]. However, they are proposed
for static graphs. Some variants [2, 13] are designed to detect dense
subgraphs in dynamic graphs. [30] is proposed to spot generally
dense subtensors created in a short period of time. Unlike these stud-
ies, Spade detects the fraudsters on both weighted and unweighted
graphs in real time. Moreover, we propose an edge grouping tech-
nique which distinguishes potential fraudulent transactions from
benign transactions and enables incremental maintenance in batch.

00

1 M2 M3 M4 M5
V13N V3N V3N V3N VI3
- = = = o |

|
@)
8

[ & & &

U1 U2 U3 U4 us
(a) Customer-merchant (b) Deal-hunter (c) Click-farming
collusion

(d) Details of Case(a)
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IncDG: start IncDG: detect fraud at T1 DG: detect fraud at T
To Ti=To+1s T2 =To+60s Timeline (T)

Figure 12: Case study: three fraud patterns

Graph clustering. A common practice is to employ graph clus-
tering that divides a large graph into smaller partitions for fraud
detection. DBSCAN [14, 15] and its variant hdbscan [27] use local
search heuristics to detect dense clusters. K-Means [12] is a clustering
method of vector quantization. [34] detects medical insurance fraud
by recognizing outliers. Unlike these studies, Spade is robust with
worst-case guarantees in search results. Moreover, Spade provides
simple but expressive APIs for developers, which allows their peeling
algorithms to be incremental in nature on evolving graphs.

Fraud detection using graph techniques. COPYCATCH [4] and
GETTHESCOOP [22] use local search heuristics to detect dense sub-
graphs on bipartite graphs. Label propagation [33] is an efficient and
effective method of detecting community. [9] explores link analysis
to detect fraud. [32] and [10] explore the GNN to detect fraud on
the graph. Unlike these studies, Spade detects fraud in real-time and
supports evolving graphs.

7 CONCLUSION

In this paper, we propose a real-time fraud detection framework
called Spade. We propose three fundamental peeling sequence re-
ordering techniques to avoid detecting fraudulent communities from
scratch. Spade enables popular peeling algorithms to be incremental
in nature and improves their efficiency. Our experiments show that
Spade speeds up fraud detection up to 6 orders of magnitude and up
to 88.34% fraud activities can be prevented.

The results and case studies demonstrate that our algorithm is
helpful to address the challenges in real-time fraud detection for
the real problems in Grab but also goes beyond for other graph
applications as shown in our datasets.
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